版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海市浦東新區(qū)第三教育署達(dá)標(biāo)名校2024年中考聯(lián)考數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將△ABE向右平移2cm得到△DCF,如果△ABE的周長是16cm,那么四邊形ABFD的周長是(
)A.16cm B.18cm C.20cm D.21cm2.如圖,Rt△ABC中,∠C=90°,∠A=35°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉(zhuǎn)m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=()A.35° B.60° C.70° D.70°或120°3.如圖,夜晚,小亮從點A經(jīng)過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關(guān)系的圖象大致為()A. B.C. D.4.如圖,已知⊙O的半徑為5,AB是⊙O的弦,AB=8,Q為AB中點,P是圓上的一點(不與A、B重合),連接PQ,則PQ的最小值為()A.1 B.2 C.3 D.85.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結(jié)論的序號是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤6.如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿在A→B→C→D路徑勻速運動到點D,設(shè)△PAD的面積為y,P點的運動時間為x,則y關(guān)于x的函數(shù)圖象大致為()A.B.C.D.7.如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點E,交AB于點D,若四邊形ODBC的面積為3,則k的值為()A.1 B.2 C.3 D.68.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數(shù)是()A.1 B.2 C.3 D.49.2017年5月5日國產(chǎn)大型客機(jī)C919首飛成功,圓了中國人的“大飛機(jī)夢”,它顏值高性能好,全長近39米,最大載客人數(shù)168人,最大航程約5550公里.?dāng)?shù)字5550用科學(xué)記數(shù)法表示為()A.0.555×104 B.5.55×103 C.5.55×104 D.55.5×10310.關(guān)于的方程有實數(shù)根,則整數(shù)的最大值是()A.6 B.7 C.8 D.9二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,□ABCD中,E是BA的中點,連接DE,將△DAE沿DE折疊,使點A落在□ABCD內(nèi)部的點F處.若∠CBF=25°,則∠FDA的度數(shù)為_________.12.已知a,b為兩個連續(xù)的整數(shù),且a<<b,則ba=_____.13.分解因式:ax2﹣2ax+a=___________.14.如圖,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,則的值等于_____15.如圖,垂直于x軸的直線AB分別與拋物線C1:y=x2(x≥0)和拋物線C2:y=(x≥0)交于A,B兩點,過點A作CD∥x軸分別與y軸和拋物線C2交于點C、D,過點B作EF∥x軸分別與y軸和拋物線C1交于點E、F,則的值為_____.16.將直線y=x+b沿y軸向下平移3個單位長度,點A(-1,2)關(guān)于y軸的對稱點落在平移后的直線上,則b的值為____.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x與反比例函數(shù)的圖象相交于點.(1)求a、k的值;(2)直線x=b()分別與一次函數(shù)y=x、反比例函數(shù)的圖象相交于點M、N,當(dāng)MN=2時,畫出示意圖并直接寫出b的值.18.(8分)濟(jì)南國際滑雪自建成以來,吸引大批滑雪愛好者,一滑雪者從山坡滑下,測得滑行距離y(單位:m)與滑行時間x(單位:s)之間的關(guān)系可以近似的用二次函數(shù)來表示.滑行時間x/s0123…滑行距離y/m041224…(1)根據(jù)表中數(shù)據(jù)求出二次函數(shù)的表達(dá)式.現(xiàn)測量出滑雪者的出發(fā)點與終點的距離大約840m,他需要多少時間才能到達(dá)終點?將得到的二次函數(shù)圖象補(bǔ)充完整后,向左平移2個單位,再向下平移5個單位,求平移后的函數(shù)表達(dá)式.19.(8分)如圖,在Rt△ABC中∠ABC=90°,AC的垂直平分線交BC于D點,交AC于E點,OC=OD.(1)若,DC=4,求AB的長;(2)連接BE,若BE是△DEC的外接圓的切線,求∠C的度數(shù).20.(8分)如圖所示,點C為線段OB的中點,D為線段OA上一點.連結(jié)AC、BD交于點P.(問題引入)(1)如圖1,若點P為AC的中點,求的值.溫馨提示:過點C作CE∥AO交BD于點E.(探索研究)(2)如圖2,點D為OA上的任意一點(不與點A、O重合),求證:.(問題解決)(3)如圖2,若AO=BO,AO⊥BO,,求tan∠BPC的值.21.(8分)如圖,Rt△ABC中,∠ABC=90°,點D,F(xiàn)分別是AC,AB的中點,CE∥DB,BE∥DC.(1)求證:四邊形DBEC是菱形;(2)若AD=3,DF=1,求四邊形DBEC面積.22.(10分)如圖,有6個質(zhì)地和大小均相同的球,每個球只標(biāo)有一個數(shù)字,將標(biāo)有3,4,5的三個球放入甲箱中,標(biāo)有4,5,6的三個球放入乙箱中.(1)小宇從甲箱中隨機(jī)模出一個球,求“摸出標(biāo)有數(shù)字是3的球”的概率;(2)小宇從甲箱中、小靜從乙箱中各自隨機(jī)摸出一個球,若小宇所摸球上的數(shù)字比小靜所摸球上的數(shù)字大1,則稱小宇“略勝一籌”.請你用列表法(或畫樹狀圖)求小宇“略勝一籌”的概率.23.(12分)如圖,△ABC中AB=AC,請你利用尺規(guī)在BC邊上求一點P,使△ABC~△PAC不寫畫法,(保留作圖痕跡).24.先化簡,再求值:()÷,其中a=+1.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:已知,△ABE向右平移2cm得到△DCF,根據(jù)平移的性質(zhì)得到EF=AD=2cm,AE=DF,又因△ABE的周長為16cm,所以AB+BC+AC=16cm,則四邊形ABFD的周長=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案選C.考點:平移的性質(zhì).2、D【解析】
①當(dāng)點B落在AB邊上時,根據(jù)DB=DB1,即可解決問題,②當(dāng)點B落在AC上時,在RT△DCB2中,根據(jù)∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【詳解】①當(dāng)點B落在AB邊上時,∵DB=DB∴∠B=∠DB∴m=∠BDB②當(dāng)點B落在AC上時,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故選D.【點睛】本題考查的知識點是旋轉(zhuǎn)的性質(zhì),解題關(guān)鍵是考慮多種情況,進(jìn)行分類討論.3、A【解析】設(shè)身高GE=h,CF=l,AF=a,當(dāng)x≤a時,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數(shù),∴自變量x的系數(shù)是固定值,∴這個函數(shù)圖象肯定是一次函數(shù)圖象,即是直線;∵影長將隨著離燈光越來越近而越來越短,到燈下的時候,將是一個點,進(jìn)而隨著離燈光的越來越遠(yuǎn)而影長將變大.故選A.4、B【解析】
連接OP、OA,根據(jù)垂徑定理求出AQ,根據(jù)勾股定理求出OQ,計算即可.【詳解】解:由題意得,當(dāng)點P為劣弧AB的中點時,PQ最小,
連接OP、OA,由垂徑定理得,點Q在OP上,AQ=AB=4,在Rt△AOB中,OQ==3,∴PQ=OP-OQ=2,故選:B.【點睛】本題考查的是垂徑定理、勾股定理,掌握垂徑定理的推論是解題的關(guān)鍵.5、C【解析】
根據(jù)二次函數(shù)的性質(zhì)逐項分析可得解.【詳解】解:由函數(shù)圖象可得各系數(shù)的關(guān)系:a<0,b<0,c>0,則①當(dāng)x=1時,y=a+b+c<0,正確;②當(dāng)x=-1時,y=a-b+c>1,正確;③abc>0,正確;④對稱軸x=-1,則x=-2和x=0時取值相同,則4a-2b+c=1>0,錯誤;⑤對稱軸x=-=-1,b=2a,又x=-1時,y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結(jié)論的序號是①②③⑤.故選C6、B【解析】【分析】設(shè)菱形的高為h,即是一個定值,再分點P在AB上,在BC上和在CD上三種情況,利用三角形的面積公式列式求出相應(yīng)的函數(shù)關(guān)系式,然后選擇答案即可.【詳解】分三種情況:①當(dāng)P在AB邊上時,如圖1,設(shè)菱形的高為h,y=12∵AP隨x的增大而增大,h不變,∴y隨x的增大而增大,故選項C不正確;②當(dāng)P在邊BC上時,如圖2,y=12AD和h都不變,∴在這個過程中,y不變,故選項A不正確;③當(dāng)P在邊CD上時,如圖3,y=12∵PD隨x的增大而減小,h不變,∴y隨x的增大而減小,∵P點從點A出發(fā)沿A→B→C→D路徑勻速運動到點D,∴P在三條線段上運動的時間相同,故選項D不正確,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,菱形的性質(zhì),根據(jù)點P的位置的不同,運用分類討論思想,分三段求出△PAD的面積的表達(dá)式是解題的關(guān)鍵.7、B【解析】
先根據(jù)矩形的特點設(shè)出B、C的坐標(biāo),根據(jù)矩形的面積求出B點橫縱坐標(biāo)的積,由D為AB的中點求出D點的橫縱坐標(biāo),再由待定系數(shù)法即可求出反比例函數(shù)的解析式.【詳解】解:如圖:連接OE,設(shè)此反比例函數(shù)的解析式為y=(k>0),C(c,0),則B(c,b),E(c,),設(shè)D(x,y),∵D和E都在反比例函數(shù)圖象上,∴xy=k,即,∵四邊形ODBC的面積為3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案為:B.【點睛】本題考查了反比例函數(shù)中比例系數(shù)k的幾何意義,涉及到矩形的性質(zhì)及用待定系數(shù)法求反比例函數(shù)的解析式,難度適中.8、B【解析】試題分析:根據(jù)俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖9、B【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:5550=5.55×1.故選B.【點睛】本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.10、C【解析】
方程有實數(shù)根,應(yīng)分方程是一元二次方程與不是一元二次方程,兩種情況進(jìn)行討論,當(dāng)不是一元二次方程時,a-6=0,即a=6;當(dāng)是一元二次方程時,有實數(shù)根,則△≥0,求出a的取值范圍,取最大整數(shù)即可.【詳解】當(dāng)a-6=0,即a=6時,方程是-1x+6=0,解得x=;
當(dāng)a-6≠0,即a≠6時,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
取最大整數(shù),即a=1.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、50°【解析】
延長BF交CD于G,根據(jù)折疊的性質(zhì)和平行四邊形的性質(zhì),證明△BCG≌△DAE,從而∠7=∠6=25°,進(jìn)而可求∠FDA得度數(shù).【詳解】延長BF交CD于G由折疊知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案為50°.【點睛】本題考查了折疊的性質(zhì),平行四邊形的性質(zhì),全等三角形的判定與性質(zhì).證明△BCG≌△DAE是解答本題的關(guān)鍵.12、1【解析】
根據(jù)已知a<<b,結(jié)合a、b是兩個連續(xù)的整數(shù)可得a、b的值,即可求解.【詳解】解:∵a,b為兩個連續(xù)的整數(shù),且a<<b,∴a=2,b=3,∴ba=32=1.故答案為1.【點睛】此題考查的是如何根據(jù)無理數(shù)的范圍確定兩個有理數(shù)的值,題中根據(jù)的取值范圍,可以很容易得到其相鄰兩個整數(shù),再結(jié)合已知條件即可確定a、b的值,13、a(x-1)1.【解析】
先提取公因式a,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】解:ax1-1ax+a,
=a(x1-1x+1),
=a(x-1)1.【點睛】本題考查了用提公因式法和公式法進(jìn)行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時因式分解要徹底,直到不能分解為止.14、【解析】
根據(jù)平行線分線段成比例定理解答即可.【詳解】解:∵DE∥BC,AD=2BD,∴,∵EF∥AB,∴,故答案為.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應(yīng)線段成比例.15、【解析】
根據(jù)二次函數(shù)的圖象和性質(zhì)結(jié)合三角形面積公式求解.【詳解】解:設(shè)點橫坐標(biāo)為,則點縱坐標(biāo)為,點B的縱坐標(biāo)為,∵BE∥x軸,∴點F縱坐標(biāo)為,∵點F是拋物線上的點,∴點F橫坐標(biāo)為,∵軸,∴點D縱坐標(biāo)為,∵點D是拋物線上的點,∴點D橫坐標(biāo)為,,故答案為.【點睛】此題重點考查學(xué)生對二次函數(shù)的圖象和性質(zhì)的應(yīng)用能力,熟練掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.16、1【解析】試題分析:先根據(jù)一次函數(shù)平移規(guī)律得出直線y=x+b沿y軸向下平移3個單位長度后的直線解析式y(tǒng)=x+b﹣3,再把點A(﹣1,2)關(guān)于y軸的對稱點(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=1.故答案為1.考點:一次函數(shù)圖象與幾何變換三、解答題(共8題,共72分)17、(1),k=2;(2)b=2或1.【解析】
(1)依據(jù)直線y=x與雙曲線(k≠0)相交于點,即可得到a、k的值;(2)分兩種情況:當(dāng)直線x=b在點A的左側(cè)時,由x=2,可得x=1,即b=1;當(dāng)直線x=b在點A的右側(cè)時,由x2,可得x=2,即b=2.【詳解】(1)∵直線y=x與雙曲線(k≠0)相交于點,∴,∴,∴,解得:k=2;(2)如圖所示:當(dāng)直線x=b在點A的左側(cè)時,由x=2,可得:x=1,x=﹣2(舍去),即b=1;當(dāng)直線x=b在點A的右側(cè)時,由x2,可得x=2,x=﹣1(舍去),即b=2;綜上所述:b=2或1.【點睛】本題考查了利用待定系數(shù)法求函數(shù)解析式以及函數(shù)的圖象與解析式的關(guān)系,解題時注意:點在圖象上,就一定滿足函數(shù)的解析式.18、(1)20s;(2)【解析】
(1)利用待定系數(shù)法求出函數(shù)解析式,再求出y=840時x的值即可得;(2)根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.【詳解】解:(1)∵該拋物線過點(0,0),∴設(shè)拋物線解析式為y=ax2+bx,將(1,4)、(2,12)代入,得:,解得:,所以拋物線的解析式為y=2x2+2x,當(dāng)y=840時,2x2+2x=840,解得:x=20(負(fù)值舍去),即他需要20s才能到達(dá)終點;(2)∵y=2x2+2x=2(x+)2﹣,∴向左平移2個單位,再向下平移5個單位后函數(shù)解析式為y=2(x+2+)2﹣﹣5=2(x+)2﹣.【點睛】本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式及函數(shù)圖象平移的規(guī)律.19、(1);(2)30°【解析】
(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易證,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例線段可求AB;
(2)連接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切線,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜邊上的中線,那么BE=CE,于是∠EBC=∠C,從而有∠EOB=∠EDC,又OE=OD,易證△DEO是等邊三角形,那么∠EDC=60°,從而可求∠C.【詳解】解:(1)∵AC的垂直平分線交BC于D點,交AC于E點,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴DE=,∴AC=6,∴AB:6=:4,∴AB=;(2)連接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切線,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中點,∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等邊三角形,∴∠EDC=60°,∴∠C=30°.【點睛】考查了切線的性質(zhì)、線段垂直平分線的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理、等邊三角形的判定和性質(zhì).解題的關(guān)鍵是連接OE,構(gòu)造直角三角形.20、(1);(2)見解析;(3)【解析】
(1)過點C作CE∥OA交BD于點E,即可得△BCE∽△BOD,根據(jù)相似三角形的性質(zhì)可得,再證明△ECP≌△DAP,由此即可求得的值;(2)過點D作DF∥BO交AC于點F,即可得,,由點C為OB的中點可得BC=OC,即可證得;(3)由(2)可知=,設(shè)AD=t,則BO=AO=4t,OD=3t,根據(jù)勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,從而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.【詳解】(1)如圖1,過點C作CE∥OA交BD于點E,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如圖2,過點D作DF∥BO交AC于點F,則=,=.∵點C為OB的中點,∴BC=OC,∴=;(3)如圖2,∵=,由(2)可知==.設(shè)AD=t,則BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,則tan∠BPC=tan∠A==.【點睛】本題考查了相似三角形的判定與性質(zhì),準(zhǔn)確作出輔助線,構(gòu)造相似三角形是解決本題的關(guān)鍵,也是求解的難點.21、(1)見解析;(1)4【解析】
(1)根據(jù)平行四邊形的判定定理首先推知四邊形DBEC為平行四邊形,然后由直角三角形斜邊上的中線等于斜邊的一半得到其鄰邊相等:CD=BD,得證;(1)由三角形中位線定理和勾股定理求得AB邊的長度,然后根據(jù)菱形的性質(zhì)和三角形的面積公式進(jìn)行解答.【詳解】(1)證明:∵CE∥DB,BE∥DC,∴四邊形DBEC為平行四邊形.又∵Rt△ABC中,∠ABC=90°,點D是AC的中點,∴CD=BD=A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年綠色能源項目保證人資金借款合同2篇
- 月嫂點心課程設(shè)計
- 自動化專業(yè)綜合課程設(shè)計
- 虛擬直播搭建課程設(shè)計
- 科學(xué)性與價值性統(tǒng)一
- 2024版租賃合同租金支付方式變更協(xié)議
- 2025年度水庫承包合同協(xié)議書(水庫防洪安全)3篇
- 食品生產(chǎn)智能化監(jiān)管平臺建設(shè)方案
- DB3308T 094-2021 不動產(chǎn)登記一窗受理平臺技術(shù)規(guī)范
- 2024年非正常學(xué)期入學(xué)合同版B版
- 2022年7月云南省普通高中學(xué)業(yè)水平考試物理含答案
- 學(xué)校安全工作匯報PPT
- 一年級語文上冊《兩件寶》教案1
- 關(guān)注健康預(yù)防甲流甲型流感病毒知識科普講座課件
- 咨詢公司工作總結(jié)(共5篇)
- GB/T 4852-2002壓敏膠粘帶初粘性試驗方法(滾球法)
- GB/T 38836-2020農(nóng)村三格式戶廁建設(shè)技術(shù)規(guī)范
- 醫(yī)院固定資產(chǎn)及物資購置工作流程圖
- 中學(xué)學(xué)校辦公室主任個人述職報告
- GA/T 1774-2021法庭科學(xué)手印檢驗實驗室建設(shè)規(guī)范
- 京東商業(yè)計劃書課件
評論
0/150
提交評論