上海市建平實驗中學2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第1頁
上海市建平實驗中學2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第2頁
上海市建平實驗中學2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第3頁
上海市建平實驗中學2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第4頁
上海市建平實驗中學2025屆高一數(shù)學第二學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

上海市建平實驗中學2025屆高一數(shù)學第二學期期末達標檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若正實數(shù)x,y滿足不等式,則的取值范圍是()A. B. C. D.2.已知兩點,,直線過點且與線段相交,則直線的斜率的取值范圍是()A. B.C. D.或3.用斜二測畫法畫一個邊長為2的正三角形的直觀圖,則直觀圖的面積是:A. B. C. D.4.如圖,三棱柱中,側棱底面ABC,,,,則異面直線與所成角的余弦值為()A. B. C. D.5.已知表示三條不同的直線,表示兩個不同的平面,下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則6.在中,角A、B、C的對邊分別為a、b、c,若,則的形狀為()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形7.設變量滿足約束條件,則目標函數(shù)的最大值為()A.3 B.4 C.18 D.408.已知實數(shù)m,n滿足不等式組則關于x的方程x2-(3m+2n)x+6mn=0的兩根之和的最大值和最小值分別是()A.7,-4 B.8,-8C.4,-7 D.6,-69.若,,,設,,且,則的值為()A.0 B.3 C.15 D.1810.在中,,則的形狀為()A.直角三角形 B.等腰三角形 C.鈍角三角形 D.正三角形二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)(,)的部分圖像如圖所示,則函數(shù)解析式為_______.12.已知直線和,若,則a等于________.13.已知二面角為60°,動點P、Q分別在面、內(nèi),P到的距離為,Q到的距離為,則P、Q兩點之間距離的最小值為.14.將角度化為弧度:________.15.已知圓,直線l被圓所截得的弦的中點為.則直線l的方程是________(用一般式直線方程表示).16.在空間直角坐標系中,三棱錐的各頂點都在一個半徑為的球面上,為球心,,,,,則球的體積與三棱錐的體積之比是_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設.(1)若不等式對一切實數(shù)恒成立,求實數(shù)的取值范圍;(2)解關于的不等式(R).18.在平面上有一點列、、、、,對每個正整數(shù),點位于函數(shù)的圖像上,且點、點與點構成一個以為頂角頂點的等腰三角形;(1)求點的縱坐標的表達式;(2)若對每個自然數(shù),以、、為邊長能構成一個三角形,求的取值范圍;(3)設,若取(2)中確定的范圍內(nèi)的最小整數(shù),問數(shù)列的最大項的項數(shù)是多少?試說明理由;19.已知向量,.求:(1);(2)與的夾角的余弦值;(3)求的值使與為平行向量.20.已知點,圓.(1)求過點的圓的切線方程;(2)若直線與圓相交于、兩點,且弦的長為,求的值.21.如圖,四棱錐P-ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60°,E是BC的中點,M(1)求證:AE⊥平面PAD;(2)若AB=AP=2,求三棱錐P-ACM的體積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

試題分析:由正實數(shù)滿足不等式,得到如下圖陰影所示的區(qū)域:當過點時,,當過點時,,所以的取值范圍是.考點:線性規(guī)劃問題.2、D【解析】

作出示意圖,再結合兩點間的斜率公式,即可求得答案.【詳解】,,又直線過點且與線段相交,作圖如下:則由圖可知,直線的斜率的取值范圍是:或.故選:D【點睛】本題借直線與線段的交點問題,考查兩點間的斜率公式,考查理解辨析能力,屬于中檔題.3、C【解析】分析:先根據(jù)直觀圖畫法得底不變,為2,再研究高,最后根據(jù)三角形面積公式求結果.詳解:因為根據(jù)直觀圖畫法得底不變,為2,高為,所以直觀圖的面積是選C.點睛:本題考查直觀圖畫法,考查基本求解能力.4、A【解析】

以為坐標原點,分別以所在直線為軸建立空間直角坐標系,由已知求與的坐標,由兩向量所成角的余弦值求解異面直線與所成角的余弦值.【詳解】如圖,以為坐標原點,分別以所在直線為軸建立空間直角坐標系,由已知得:,,所以,.設異面直線與所成角,則故異面直線與所成角的余弦值為.故選:A【點睛】本題主要考查了利用空間向量求解線線角的問題,屬于基礎題.5、D【解析】

利用線面平行、線面垂直的判定定理與性質(zhì)依次對選項進行判斷,即可得到答案.【詳解】對于A,當時,則與不平行,故A不正確;對于B,直線與平面平行,則直線與平面內(nèi)的直線有兩種關系:平行或異面,故B不正確;對于C,若,則與不垂直,故C不正確;對于D,若兩條直線垂直于同一個平面,則這兩條直線平行,故D正確;故答案選D【點睛】本題考查空間中直線與直線、直線與平面位置關系相關定理的應用,屬于中檔題.6、D【解析】

由正弦定理化簡,得到,由此得到三角形是等腰或直角三角形,得到答案.【詳解】由題意知,,結合正弦定理,化簡可得,所以,則,所以,得或,所以三角形是等腰或直角三角形.故選D.【點睛】本題考查了正弦定理和余弦定理在解三角形中的應用.在解三角形問題中經(jīng)常把邊的問題轉(zhuǎn)化成角的正弦或余弦函數(shù),利用三角函數(shù)的關系來解決問題,屬于基礎題.7、C【解析】不等式所表示的平面區(qū)域如下圖所示,當所表示直線經(jīng)過點時,有最大值考點:線性規(guī)劃.8、A【解析】由題意得,方程的兩根之和,畫出約束條件所表示的平面區(qū)域,如圖所示,由,可得,此時,由,可得,此時,故選A.9、B【解析】

首先分別求出向量,然后再用兩向量平行的坐標表示,最后求值.【詳解】,,當時,,解得.故選B.【點睛】本題考查了向量平行的坐標表示,屬于基礎題型.10、A【解析】

在中,由,變形為,再利用內(nèi)角和轉(zhuǎn)化為,通過兩角和的正弦展開判斷.【詳解】在中,因為,所以,所以,所以,所以,所以直角三角形.故選:A【點睛】本題主要考查了利用三角恒等變換判斷三角形的形狀,還考查了運算求解的能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、y=sin(2x+).【解析】

由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值答案可求【詳解】根據(jù)函數(shù)y=sin(ωx+φ)(ω>0,0<φ)的部分圖象,可得A=1,?,∴ω=2,再結合五點法作圖可得2?φ=π,∴φ,則函數(shù)解析式為y=sin(2x+)故答案為:y=sin(2x+).【點睛】本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值難度中檔.12、【解析】

根據(jù)兩直線互相垂直的性質(zhì)可得,從而可求出的值.【詳解】直線和垂直,.解得.故答案為:【點睛】本題考查了直線的一般式,根據(jù)兩直線的位置關系求參數(shù)的值,熟記兩直線垂直系數(shù)滿足:是關鍵,屬于基礎題.13、【解析】

如圖

分別作于A,于C,于B,于D,

連CQ,BD則,,

當且僅當,即點A與點P重合時取最小值.

故答案選C.【點睛】14、【解析】

根據(jù)角度和弧度的互化公式求解即可.【詳解】.故答案為:.【點睛】本題考查角度和弧度的互化公式,屬于基礎題.15、【解析】

將圓的方程化為標椎方程,找出圓心坐標與半徑,根據(jù)垂徑定理得到直線與直線垂直,根據(jù)直線的斜率求出直線的斜率,確定出直線的方程即可.【詳解】由已知圓的方程可得,所以圓心,半徑為3,由垂徑定理知:直線直線,因為直線的斜率,所以直線的斜率,則直線的方程為,即.故答案為:.【點睛】本題考查直線與圓的位置關系,考查邏輯思維能力和運算能力,屬于常考題.16、【解析】

首先根據(jù)坐標求出三棱錐的體積,再計算出球的體積即可.【詳解】有題知建立空間直角坐標系,如圖所示由圖知:平面,...故答案為:【點睛】本題主要考查三棱錐的外接球,根據(jù)題意建立空間直角坐標系為解題的關鍵,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】

(1)由不等式對于一切實數(shù)恒成立等價于對于一切實數(shù)恒成立,利用二次函數(shù)的性質(zhì),即可求解,得到答案.(2)不等式化為,根據(jù)一元二次不等式的解法,分類討論,即可求解.【詳解】(1)由題意,不等式對于一切實數(shù)恒成立,等價于對于一切實數(shù)恒成立.當時,不等式可化為,不滿足題意;當時,滿足,即,解得.(2)不等式等價于.當時,不等式可化為,所以不等式的解集為;當時,不等式可化為,此時,所以不等式的解集為;當時,不等式可化為,①當時,,不等式的解集為;②當時,,不等式的解集為;③當時,,不等式的解集為.【點睛】本題主要考查了不等式的恒成立問題,以及含參數(shù)的一元二次不等式的解法,其中解答中熟記一元二次不等式的解法,以及一元二次方程的性質(zhì)是解答的關鍵,著重考查了分類討論思想,以及推理與運算能力,屬于中檔試題.18、(1);(2);(3)最大,詳見解析;【解析】

(1)易得的橫坐標為代入函數(shù)即可得縱坐標.(2)易得數(shù)列為遞減的數(shù)列,若要組成三角形則,再代入表達式求解不等式即可.(3)由可知求即可.【詳解】(1)由點、點與點構成一個以為頂角頂點的等腰三角形有.故.(2)因為,故為減函數(shù),故,又以、、為邊長能構成一個三角形,故即.解得或,又,故.(3)由取(2)中確定的范圍內(nèi)的最小整數(shù),且,故.故,由題當時數(shù)列取最大項.故且,計算得當時取最大值.【點睛】本題主要考查了數(shù)列與函數(shù)的綜合題型,需要根據(jù)題意找到函數(shù)橫縱坐標的關系,同時也要列出對應的不等式再化簡求解.屬于中等題型.19、(1)5(2)(3)【解析】

(1)利用向量坐標運算法則,先求出向量的坐標,再求模;(2)利用兩個向量的數(shù)量積的定義和公式,則可求出與的夾角的余弦值;(3)利用兩個向量共線的性質(zhì),求出的值.【詳解】(1)向量,,,;(2)設與的夾角為,∵,,,所以,即與的夾角的余弦值為;(3)由題可得:,∵與為平行向量,∴,解得,即滿足使與為平行向量.【點睛】本題主要考查向量的坐標運算,涉及向量的模,數(shù)量積,共線等相關知識,屬于基礎題.20、(1)或;(2)【解析】分析:(1)根據(jù)點到直線的距離等于半徑進行求解即可,注意分直線斜率不存在和斜率存在兩種情況;(2)根據(jù)直線和圓相交時的弦長公式進行求解.詳解:(1)由圓的方程得到圓心,半徑,當直線斜率不存在時,方程與圓相切,當直線斜率存在時,設方程為,即,由題意得:,解得,∴方程為,即,則過點的切線方程為或.(2)∵圓心到直線的距離為,∴,解得:.點睛:本題主要考查直線和圓的位置關系的應用,根據(jù)直線和圓相切和相交時的弦長公式是解決本題的關鍵.21、(1)見證明;(2)3【解析】

(1)本題首先可以通過菱形的相關性質(zhì)證明出AE⊥AD,然后通過PA⊥菱形ABCD所在的平面證明出PA⊥AE,最后通過線面垂直的相關性質(zhì)即可得出結果;(2)可以將三角形APM當成三棱錐P-ACM的底面,將AE當成三棱錐P-ACM的高,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論