2025屆山東省萊州市一中數(shù)學高一下期末綜合測試試題含解析_第1頁
2025屆山東省萊州市一中數(shù)學高一下期末綜合測試試題含解析_第2頁
2025屆山東省萊州市一中數(shù)學高一下期末綜合測試試題含解析_第3頁
2025屆山東省萊州市一中數(shù)學高一下期末綜合測試試題含解析_第4頁
2025屆山東省萊州市一中數(shù)學高一下期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省萊州市一中數(shù)學高一下期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若三棱錐的所有頂點都在球的球面上,平面,,,且三棱錐的體積為,則球的體積為()A. B. C. D.2.已知,,點在內,且,設,則等于()A. B.3 C. D.3.已知是等差數(shù)列的前項和,.若對恒成立,則正整數(shù)構成的集合是()A. B. C. D.4.某產品的廣告費用x與銷售額y的統(tǒng)計數(shù)據如下表根據上表可得回歸方程中的為9.4,據此模型預報廣告費用為6萬元時銷售額為()A.63.6萬元 B.65.5萬元 C.67.7萬元 D.72.0萬元5.已知,且,則()A. B. C. D.6.若正方體的棱長為,點,在上運動,,四面體的體積為,則()A. B. C. D.7.已知,都是實數(shù),那么“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.如圖是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.9.將數(shù)列中的所有項排成如下數(shù)陣:其中每一行項數(shù)是上一行項數(shù)的倍,且從第二行起每-行均構成公比為的等比數(shù)列,記數(shù)陣中的第列數(shù)構成的數(shù)列為,為數(shù)列的前項和,若,則等于()A. B. C. D.10.函數(shù)的零點所在的一個區(qū)間是().A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,緝私艇在處發(fā)現(xiàn)走私船在方位角且距離為12海里的處正以每小時10海里的速度沿方位角的方向逃竄,緝私艇立即以每小時14海里的速度追擊,則緝私艇追上走私船所需要的時間是__________小時.12.函數(shù)的定義域為__________;13.已知橢圓的右焦點為,過點作圓的切線,若兩條切線互相垂直,則_____________.14.有一個底面半徑為2,高為2的圓柱,點,分別為這個圓柱上底面和下底面的圓心,在這個圓柱內隨機取一點P,則點P到點或的距離不大于1的概率是________.15.在區(qū)間上,與角終邊相同的角為__________.16.已知為等差數(shù)列,為其前項和,若,則,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(I)求的值(II)求的最小正周期及單調遞增區(qū)間.18.一扇形的周長為20,當扇形的圓心角等于多少時,這個扇形的面積最大?最大面積是多少?19.在三棱柱中,平面ABC,,,D,E分別為AB,中點.(Ⅰ)求證:平面;(Ⅱ)求證:四邊形為平行四邊形;(Ⅲ)求證:平面平面.20.已知,,,求:的值.21.記公差不為零的等差數(shù)列{an}的前n項和為Sn,已知=2,是與的等比中項.(Ⅰ)求數(shù)列{an}的通項公式;(Ⅱ)求數(shù)列{}的前n項和Tn.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由的體積計算得高,已知將三棱錐的外接球,轉化為長2,寬2,高的長方體的外接球,求出半徑,可得答案.【詳解】∵,,故三棱錐的底面面積為,由平面,得,又三棱錐的體積為,得,所以三棱錐的外接球,相當于長2,寬2,高的長方體的外接球,故球半徑,得,故外接球的體積.故選:A.【點睛】本題考查了三棱錐外接球的體積,三棱錐體積公式的應用,根據已知計算出球的半徑是解答的關鍵,屬于中檔題.2、B【解析】

先根據,可得,又因為,,所以可得:在軸方向上的分量為,在軸方向上的分量為,又根據,可得答案.【詳解】,,

,,

在軸方向上的分量為,

在軸方向上的分量為,

,

,,

兩式相比可得:.故選B.【點睛】.向量的坐標運算主要是利用加、減、數(shù)乘運算法則進行的.若已知有向線段兩端點的坐標,則應先求出向量的坐標,解題過程中要注意方程思想的運用及運算法則的正確使用.3、A【解析】

先分析出,即得k的值.【詳解】因為因為所以.所以,所以正整數(shù)構成的集合是.故選A【點睛】本題主要考查等差數(shù)列前n項和的最小值的求法,意在考查學生對該知識的理解掌握水平和分析推理能力.4、B【解析】∵,∵數(shù)據的樣本中心點在線性回歸直線上,

回歸方程中的為9.4∴線性回歸方程是y=9.4x+9.1,

∴廣告費用為6萬元時銷售額為9.4×6+9.1=65.5,

故選B.5、D【解析】

根據不等式的性質,一一分析選擇正誤即可.【詳解】根據不等式的性質,當時,對于A,若,則,故A錯誤;對于B,若,則,故B錯誤;對于C,若,則,故C錯誤;對于D,當時,總有成立,故D正確;故選:D.【點睛】本題考查不等式的基本性質,屬于基礎題.6、C【解析】

由題意得,到平面的距離不變=,且,即可得三棱錐的體積,利用等體積法得.【詳解】正方體的棱長為,點,在上運動,,如圖所示:點到平面的距離=,且,所以.所以三棱錐的體積=.利用等體積法得.故選:C.【點睛】本題考查了正方體的性質,等體積法求三棱錐的體積,屬于基礎題.7、D【解析】;,與沒有包含關系,故為“既不充分也不必要條件”.8、C【解析】

根據三視圖還原直觀圖,根據長度關系計算表面積得到答案.【詳解】根據三視圖還原直觀圖,如圖所示:幾何體的表面積為:故答案選C【點睛】本題考查了三視圖,將三視圖轉化為直觀圖是解題的關鍵.9、C【解析】

先確定為第11行第2個數(shù),由可得,最后根據從第二行起每一行均構成公比為的等比數(shù)列即可得出結論.【詳解】∵其中每一行項數(shù)是上一行項數(shù)的倍,第一行有一個數(shù),前10行共計個數(shù),即為第11行第2個數(shù),又∵第列數(shù)構成的數(shù)列為,,∴當時,,∴第11行第1個數(shù)為108,∴,故選:C.【點睛】本題主要考查數(shù)列的性質和應用,本題解題的關鍵是為第11行第2個數(shù),屬于中檔題.10、B【解析】

判斷函數(shù)的單調性,利用f(﹣1)與f(1)函數(shù)值的大小,通過零點存在性定理判斷即可【詳解】函數(shù)f(x)=2x+3x是增函數(shù),f(﹣1)=<1,f(1)=1+1=1>1,可得f(﹣1)f(1)<1.由零點存在性定理可知:函數(shù)f(x)=2x+3x的零點所在的一個區(qū)間(﹣1,1).故選:B.【點睛】本題考查零點存在性定理的應用,考查計算能力,注意函數(shù)的單調性的判斷.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設緝私艇追上走私船所需要的時間為小時,根據各自的速度表示出與,由,利用余弦定理列出關于的方程,求出方程的解即可得到的值.【詳解】解:設緝私艇上走私船所需要的時間為小時,則,,在中,,根據余弦定理知:,或(舍去),故緝私艇追上走私船所需要的時間為2小時.故答案為:.【點睛】本題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦、余弦定理是解本題的關鍵,屬于中檔題.12、【解析】

根據偶次被開方數(shù)大于等于零,分母不為零,列出不等式組,解出即可.【詳解】依題意可得,,解得即,故函數(shù)的定義域為.故答案為:.【點睛】本題主要考查函數(shù)定義域的求法,涉及三角不等式的解法,屬于基礎題.13、【解析】

首先分析直線與圓的位置關系,然后結合已知可判斷四邊形的形狀,得出的比值,最后得到答案.【詳解】設切點為,根據已知兩切線垂直,四邊形是正方形,,根據,可得.故填:.【點睛】本題考查了直線與圓的幾何性質,以及橢圓的性質,考查了轉化與化歸的能力,屬于基礎題型.14、【解析】

本題利用幾何概型求解.先根據到點的距離等于1的點構成圖象特征,求出其體積,最后利用體積比即可得點到點,的距離不大于1的概率;【詳解】解:由題意可知,點P到點或的距離都不大于1的點組成的集合分別以、為球心,1為半徑的兩個半球,其體積為,又該圓柱的體積為,則所求概率為.故答案為:【點睛】本題主要考查幾何概型、圓柱和球的體積等基礎知識,考查運算求解能力,考查空間想象力、化歸與轉化思想.關鍵是明確滿足題意的測度為體積比.15、【解析】

根據與終邊相同的角可以表示為這一方法,即可得出結論.【詳解】因為,所以與角終邊相同的角為.【點睛】本題考查終邊相同的角的表示方法,考查對基本概念以及基本知識的熟練程度,考查了數(shù)學運算能力,是簡單題.16、【解析】

利用等差中項的性質求出的值,再利用等差中項的性質求出的值.【詳解】由等差中項的性質可得,得,由等差中項的性質得,.故答案為:.【點睛】本題考查等差數(shù)列中項的計算,充分利用等差中項的性質進行計算是解題的關鍵,考查計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(I)2;(II)的最小正周期是,.【解析】

(Ⅰ)直接利用三角函數(shù)關系式的恒等變換,把函數(shù)的關系式變形成正弦型函數(shù),進一步求出函數(shù)的值.(Ⅱ)直接利用函數(shù)的關系式,求出函數(shù)的周期和單調區(qū)間.【詳解】(Ⅰ)f(x)=sin2x﹣cos2xsinxcosx,=﹣cos2xsin2x,=﹣2,則f()=﹣2sin()=2,(Ⅱ)因為.所以的最小正周期是.由正弦函數(shù)的性質得,解得,所以,的單調遞增區(qū)間是.【點睛】本題主要考查了三角函數(shù)的化簡,以及函數(shù)的性質,是高考中的常考知識點,屬于基礎題,強調基礎的重要性;三角函數(shù)解答題中,涉及到周期,單調性,單調區(qū)間以及最值等考點時,都屬于考查三角函數(shù)的性質,首先應把它化為三角函數(shù)的基本形式即,然后利用三角函數(shù)的性質求解.18、;;【解析】

設扇形的半徑為,弧長為,利用周長關系,表示出扇形的面積,利用二次函數(shù)求出面積的最大值,以及圓心角的大小.【詳解】設扇形的半徑為,弧長為,則,即,扇形的面積,將上式代入得,所以當且僅當時,有最大值,此時,可得,所以當時,扇形的面積取最大值,最大值為【點睛】本題考查了扇形的弧長公式、面積公式以及二次函數(shù)的性質,需熟記扇形的弧長、面積公式,屬于基礎題.19、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】

(Ⅰ)只需證明,,即可得平面;(Ⅱ)可得四邊形為平行四邊形,,,即可得四邊形為平行四邊形;(Ⅲ)易得平面,即可得平面平面.【詳解】(Ⅰ)∵平面,∴,又,,而,∴平面.(Ⅱ)∵、分別為、的中點,∴,,即四邊形為平行四邊形,∴,,∴四邊形為平行四邊形.(Ⅲ)∵,為中點,∴,又∵,且,∴平面,而平面,∴平面平面.【點睛】本題考查了空間點、線、面位置關系,屬于基礎題.20、【解析】

求出和的取值范圍,利用同角三角函數(shù)的基本關系求出和的值,然后利用兩角差的余弦公式可求出的值.【詳解】,則,且,,,,,,,因此,.故答案為:.【點睛】本題考查利用兩角差的余弦公式求值,解題的關鍵就是利用已知角來表示

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論