2023-2024學年安徽省和縣重點達標名校中考數(shù)學模擬試卷含解析_第1頁
2023-2024學年安徽省和縣重點達標名校中考數(shù)學模擬試卷含解析_第2頁
2023-2024學年安徽省和縣重點達標名校中考數(shù)學模擬試卷含解析_第3頁
2023-2024學年安徽省和縣重點達標名校中考數(shù)學模擬試卷含解析_第4頁
2023-2024學年安徽省和縣重點達標名校中考數(shù)學模擬試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年安徽省和縣重點達標名校中考數(shù)學模擬精編試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如果a﹣b=5,那么代數(shù)式(﹣2)?的值是()A.﹣ B. C.﹣5 D.52.如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=()A. B. C. D.3.下列計算正確的是A.a(chǎn)2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-44.式子有意義的x的取值范圍是()A.且x≠1 B.x≠1 C. D.且x≠15.若關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍()A. B. C.且 D.6.如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為()A.7 B. C. D.97.如果t>0,那么a+t與a的大小關系是()A.a(chǎn)+t>aB.a(chǎn)+t<aC.a(chǎn)+t≥aD.不能確定8.由五個相同的立方體搭成的幾何體如圖所示,則它的左視圖是()A. B.C. D.9.按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得△DEF,則下列說法正確的個數(shù)是()①△ABC與△DEF是位似圖形

②△ABC與△DEF是相似圖形③△ABC與△DEF的周長比為1:2

④△ABC與△DEF的面積比為4:1.A.1 B.2 C.3 D.410.如圖已知⊙O的內(nèi)接五邊形ABCDE,連接BE、CE,若AB=BC=CE,∠EDC=130°,則∠ABE的度數(shù)為()A.25° B.30° C.35° D.40°二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解:_______________________.12.如圖,以點O為圓心的兩個圓中,大圓的弦AB切小圓于點C,OA交小圓于點D,若OD=2,tan∠OAB=,則AB的長是________.13.已知圓錐的底面圓半徑為3cm,高為4cm,則圓錐的側(cè)面積是________cm2.14.填在下面各正方形中的四個數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值是.15.因式分解:2b2a2﹣a3b﹣ab3=_____.16.現(xiàn)有一張圓心角為108°,半徑為40cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個底面半徑為10cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的圓心角θ為_____.三、解答題(共8題,共72分)17.(8分)某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:202119162718312921222520192235331917182918352215181831311922整理上面數(shù)據(jù),得到條形統(tǒng)計圖:樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:統(tǒng)計量平均數(shù)眾數(shù)中位數(shù)數(shù)值23m21根據(jù)以上信息,解答下列問題:上表中眾數(shù)m的值為;為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應根據(jù)來確定獎勵標準比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)該部門規(guī)定:每天加工零件的個數(shù)達到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).18.(8分)如圖,在△ABC中,AB=AC=4,∠A=36°.在AC邊上確定點D,使得△ABD與△BCD都是等腰三角形,并求BC的長(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)19.(8分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HF與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米).(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,,)20.(8分)如圖,在矩形ABCD中,AD=4,點E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當AE為何值時,△AEF的面積最大?21.(8分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).22.(10分)定義:如果把一條拋物線繞它的頂點旋轉(zhuǎn)180°得到的拋物線我們稱為原拋物線的“孿生拋物線”.(1)求拋物線y=x2﹣2x的“孿生拋物線”的表達式;(2)若拋物線y=x2﹣2x+c的頂點為D,與y軸交于點C,其“孿生拋物線”與y軸交于點C′,請判斷△DCC’的形狀,并說明理由:(3)已知拋物線y=x2﹣2x﹣3與y軸交于點C,與x軸正半軸的交點為A,那么是否在其“孿生拋物線”上存在點P,在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形?若存在,求出P點的坐標;若不存在,說明理由.23.(12分)如圖1,正方形ABCD的邊長為4,把三角板的直角頂點放置BC中點E處,三角板繞點E旋轉(zhuǎn),三角板的兩邊分別交邊AB、CD于點G、F.(1)求證:△GBE∽△GEF.(2)設AG=x,GF=y,求Y關于X的函數(shù)表達式,并寫出自變量取值范圍.(3)如圖2,連接AC交GF于點Q,交EF于點P.當△AGQ與△CEP相似,求線段AG的長.24.如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為1.當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】【分析】先對括號內(nèi)的進行通分,進行分式的加減法運算,然后再進行分式的乘除法運算,最后把a-b=5整體代入進行求解即可.【詳解】(﹣2)?===a-b,當a-b=5時,原式=5,故選D.2、B【解析】

解:由折疊的性質(zhì)可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據(jù)兩角對應相等的兩三角形相似可得△AED∽△BDF所以,設AD=a,BD=2a,AB=BC=CA=3a,再設CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.【點睛】本題考查相似三角形的判定及性質(zhì).3、B【解析】【分析】根據(jù)同底數(shù)冪乘法、冪的乘方、合并同類項法則、完全平方公式逐項進行計算即可得.【詳解】A.a2·a2=a4,故A選項錯誤;B.(-a2)3=-a6,正確;C.3a2-6a2=-3a2,故C選項錯誤;D.(a-2)2=a2-4a+4,故D選項錯誤,故選B.【點睛】本題考查了同底數(shù)冪的乘法、冪的乘方、合并同類項、完全平方公式,熟練掌握各運算的運算法則是解題的關鍵.4、A【解析】根據(jù)二次根式被開方數(shù)必須是非負數(shù)和分式分母不為0的條件,要使在實數(shù)范圍內(nèi)有意義,必須且.故選A.5、C【解析】

根據(jù)一元二次方程的定義結(jié)合根的判別式即可得出關于a的一元一次不等式組,解之即可得出結(jié)論.【詳解】解:∵關于x的一元二次方程有兩個不相等的實數(shù)根,∴,解得:k<1且k≠1.故選:C.【點睛】本題考查了一元二次方程的定義、根的判別式以及解一元一次不等式組,根據(jù)一元二次方程的定義結(jié)合根的判別式列出關于a的一元一次不等式組是解題的關鍵.6、B【解析】

作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【詳解】解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.7、A【解析】試題分析:根據(jù)不等式的基本性質(zhì)即可得到結(jié)果.t>0,∴a+t>a,故選A.考點:本題考查的是不等式的基本性質(zhì)點評:解答本題的關鍵是熟練掌握不等式的基本性質(zhì)1:不等式兩邊同時加或減去同一個整式,不等號方向不變.8、D【解析】

找到從正面看所得到的圖形即可,注意所有看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從正面看第一層是二個正方形,第二層是左邊一個正方形.

故選A.【點睛】本題考查了簡單組合體的三視圖的知識,解題的關鍵是了解主視圖是由主視方向看到的平面圖形,屬于基礎題,難度不大.9、C【解析】

根據(jù)位似圖形的性質(zhì),得出①△ABC與△DEF是位似圖形進而根據(jù)位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.【詳解】解:根據(jù)位似性質(zhì)得出①△ABC與△DEF是位似圖形,②△ABC與△DEF是相似圖形,∵將△ABC的三邊縮小的原來的,∴△ABC與△DEF的周長比為2:1,故③選項錯誤,根據(jù)面積比等于相似比的平方,∴④△ABC與△DEF的面積比為4:1.故選C.【點睛】此題主要考查了位似圖形的性質(zhì),中等難度,熟悉位似圖形的性質(zhì)是解決問題的關鍵.10、B【解析】

如圖,連接OA,OB,OC,OE.想辦法求出∠AOE即可解決問題.【詳解】如圖,連接OA,OB,OC,OE.∵∠EBC+∠EDC=180°,∠EDC=130°,∴∠EBC=50°,∴∠EOC=2∠EBC=100°,∵AB=BC=CE,∴弧AB=弧BC=弧CE,∴∠AOB=∠BOC=∠EOC=100°,∴∠AOE=360°﹣3×100°=60°,∴∠ABE=∠AOE=30°.故選:B.【點睛】本題考查圓周角定理,圓心角,弧,弦之間的關系等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

先提公因式,再用平方差公式分解.【詳解】解:【點睛】本題考查因式分解,掌握因式分解方法是關鍵.12、8【解析】

如圖,連接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解決問題.【詳解】解:如圖,連接OC.∵AB是⊙O切線,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=,∴,∴AC=4,∴AB=2AC=8,故答案為8【點睛】本題考查切線的性質(zhì)、垂徑定理、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形,屬于中考常考題型.13、15π【解析】【分析】設圓錐母線長為l,根據(jù)勾股定理求出母線長,再根據(jù)圓錐側(cè)面積公式即可得出答案.【詳解】設圓錐母線長為l,∵r=3,h=4,∴母線l=,∴S側(cè)=×2πr×5=×2π×3×5=15π,故答案為15π.【點睛】本題考查了圓錐的側(cè)面積,熟知圓錐的母線長、底面半徑、圓錐的高以及圓錐的側(cè)面積公式是解題的關鍵.14、2【解析】試題分析:分析前三個正方形可知,規(guī)律為右上和左下兩個數(shù)的積減左上的數(shù)等于右下的數(shù),且左上,左下,右上三個數(shù)是相鄰的偶數(shù).因此,圖中陰影部分的兩個數(shù)分別是左下是12,右上是1.解:分析可得圖中陰影部分的兩個數(shù)分別是左下是12,右上是1,則m=12×1﹣10=2.故答案為2.考點:規(guī)律型:數(shù)字的變化類.15、﹣ab(a﹣b)2【解析】

首先確定公因式為ab,然后提取公因式整理即可.【詳解】2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案為﹣ab(a﹣b)2.【點睛】本題考查了因式分解-提公因式法,解題的關鍵是掌握提公因式法的概念.16、18°【解析】試題分析:根據(jù)圓錐的展開圖的圓心角計算法則可得:扇形的圓心角=1040考點:圓錐的展開圖三、解答題(共8題,共72分)17、(1)18;(2)中位數(shù);(3)100名.【解析】【分析】(1)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù)可以得到m的值;(2)根據(jù)題意可知應選擇中位數(shù)比較合適;(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計該部門生產(chǎn)能手的人數(shù).【詳解】(1)由圖可得,眾數(shù)m的值為18,故答案為:18;(2)由題意可得,如果想讓一半左右的工人能獲獎,應根據(jù)中位數(shù)來確定獎勵標準比較合適,故答案為:中位數(shù);(3)300×=100(名),答:該部門生產(chǎn)能手有100名工人.【點睛】本題考查了條形統(tǒng)計圖、用樣本估計總體、加權平均數(shù)、中位數(shù)和眾數(shù),解答本題的關鍵是明確題意,利用數(shù)形結(jié)合的思想解答.18、【解析】

作BD平分∠ABC交AC于D,則△ABD、△BCD、△ABC均為等腰三角形,依據(jù)相似三角形的性質(zhì)即可得出BC的長.【詳解】如圖所示,作BD平分∠ABC交AC于D,則△ABD、△BCD、△ABC均為等腰三角形,∵∠A=∠CBD=36°,∠C=∠C,∴△ABC∽△BDC,∴,設BC=BD=AD=x,則CD=4﹣x,∵BC2=AC×CD,∴x2=4×(4﹣x),解得x1=,x2=(舍去),∴BC的長.【點睛】本題主要考查了復雜作圖以及相似三角形的判定與性質(zhì),解決此類題目的關鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復雜作圖拆解成基本作圖,逐步操作.19、3.05米.【解析】

延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到結(jié)論.【詳解】延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,∴sin60°=,∴FG=2.165,∴DM=FG+GM﹣DF≈3.05米.答:籃框D到地面的距離是3.05米.考點:解直角三角形的應用.20、(1)證明見解析;(2)AE=2時,△AEF的面積最大.【解析】

(1)根據(jù)正方形的性質(zhì),可得EF=CE,再根據(jù)∠CEF=∠90°,進而可得∠FEH=∠DCE,結(jié)合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質(zhì)可得FH=ED;(2)設AE=a,用含a的函數(shù)表示△AEF的面積,再利用函數(shù)的最值求面積最大值即可.【詳解】(1)證明:∵四邊形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△FEH≌△ECD,∴FH=ED.(2)解:設AE=a,則ED=FH=4-a,∴S△AEF=12AE·FH=12a(4-a)=-12∴當AE=2時,△AEF的面積最大.【點睛】本題考查了正方形性質(zhì)、矩形性質(zhì)以及全等三角形的判斷和性質(zhì)和三角形面積有關的知識點,熟記全等三角形的各種判斷方法是解題的關鍵.21、(1);(2)【解析】試題分析:(1)先去括號,再合并同類項即可;(2)先計算括號里的,再將除法轉(zhuǎn)換在乘法計算.試題解析:(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)=a2﹣2ab+b2﹣a2+2ab+4a2﹣b2=4a2;(2).====.22、(1)y=-(x-1)2=-x2+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解析】

(1)當拋物線繞其頂點旋轉(zhuǎn)180°后,拋物線的頂點坐標不變,只是開口方向相反,則可根據(jù)頂點式寫出旋轉(zhuǎn)后的拋物線解析式;(2)可分別求出原拋物線和其“孿生拋物線”與y軸的交點坐標C、C′,由點的坐標可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孿生拋物線”為y=-x2+2x-5,當AC為對角線時,由中點坐標可知點P不存在,當AC為邊時,分兩種情況可求得點P的坐標.【詳解】(1)拋物線y=x2-2x化為頂點式為y=(x-1)2-1,頂點坐標為(1,-1),由于拋物線y=x2-2x繞其頂點旋轉(zhuǎn)180°后拋物線的頂點坐標不變,只是開口方向相反,則所得拋物線解析式為y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵拋物線y=x2-2x+c=(x-1)2+c-1,∴拋物線頂點為D的坐標為(1,c-1),與y軸的交點C的坐標為(0,c),∴其“孿生拋物線”的解析式為y=-(x-1)2+c-1,與y軸的交點C’的坐標為(0,c-2),∴CC'=c-(c-2)=2,∵點D的橫坐標為1,∴∠CDC'=90°,由對稱性質(zhì)可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵拋物線y=x2-2x-3與y軸交于點C,與x軸正半軸的交點為A,令x=0,y=-3,令y=0時,y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孿生拋物線”的解析式為y=-(x-1)2-4=-x2+2x-5,若A、C為平行四邊形的對角線,∴其中點坐標為(,?),設P(a,-a2+2a-5),∵A、C、P、Q為頂點的四邊形為平行四邊形,∴Q(0,a-3),∴=?,化簡得,a2+3a+5=0,△<0,方程無實數(shù)解,∴此時滿足條件的點P不存在,若AC為平行四邊形的邊,點P在y軸右側(cè),則AP∥CQ且AP=CQ,∵點C和點Q在y軸上,∴點P的橫坐標為3,把x=3代入“孿生拋物線”的解析式y(tǒng)=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC為平行四邊形的邊,點P在y軸左側(cè),則AQ∥CP且AQ=CP,∴點P的橫坐標為-3,把x=-3代入“孿生拋物線”的解析式y(tǒng)=-9-6-5=-20,∴P2(-3,-20)∴原拋物線的“孿生拋物線”上存在點P1(3,-8),P2(-3,-20),在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形.【點睛】本題是二次函數(shù)綜合題型,主此題主要考查了根據(jù)二次函數(shù)的圖象的變換求拋物線的解析式,解題的關鍵是求出旋轉(zhuǎn)后拋物線的頂點坐標以及確定出點P的位置,注意分情況討論.23、(1)見解析;(2)y=4﹣x+(0≤x≤3);(3)當△AGQ與△CEP相似,線段AG的長為2或4﹣.【解析】

(1)先判斷出△BEF'≌△CEF,得出BF'=CF,EF'=EF,進而得出∠BGE=∠EGF,即可得出結(jié)論;

(2)先判斷出△BEG∽△CFE進而得出CF=,即可得出結(jié)論;

(3)分兩種情況,①△AGQ∽△CEP時,判斷出∠BGE=60°,即可求出BG;

②△AGQ∽△CPE時,判斷出EG∥AC,進而得出△BEG∽△BCA即可得出BG,即可得出結(jié)論.【詳解】(1)如圖1,延長FE交AB的延長線于F',∵點E是BC的中點,∴BE=CE=2,∵四邊形ABCD是正方形,∴AB∥CD,∴∠F'=∠CFE,在△BEF'和△CEF中,,∴△BEF'≌△CEF,∴BF'=CF,EF'=EF,∵∠GEF=90°,∴GF'=GF,∴∠BGE=∠EGF,∵∠GBE=∠GEF=90°,∴△GBE∽△GEF;(2)∵∠FEG=90°,∴∠BEG+∠CEF=90°,∵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論