安徽六安市舒城古碑鎮(zhèn)2024年中考數(shù)學(xué)最后一模試卷含解析_第1頁(yè)
安徽六安市舒城古碑鎮(zhèn)2024年中考數(shù)學(xué)最后一模試卷含解析_第2頁(yè)
安徽六安市舒城古碑鎮(zhèn)2024年中考數(shù)學(xué)最后一模試卷含解析_第3頁(yè)
安徽六安市舒城古碑鎮(zhèn)2024年中考數(shù)學(xué)最后一模試卷含解析_第4頁(yè)
安徽六安市舒城古碑鎮(zhèn)2024年中考數(shù)學(xué)最后一模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽六安市舒城古碑鎮(zhèn)2024年中考數(shù)學(xué)最后一模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列美麗的壯錦圖案是中心對(duì)稱圖形的是()A. B. C. D.2.在代數(shù)式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠03.如圖,矩形ABCD中,AB=8,BC=1.點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對(duì)角線AC上.若四邊形EGFH是菱形,則AE的長(zhǎng)是()A.2 B.3 C.5 D.64.如圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點(diǎn)A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為()A. B. C. D.5.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F(xiàn)分別是CD,AD上的點(diǎn),且CE=AF.如果∠AED=62°,那么∠DBF的度數(shù)為()A.62° B.38° C.28° D.26°6.下列運(yùn)算中,正確的是()A.(a3)2=a5 B.(﹣x)2÷x=﹣xC.a(chǎn)3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x67.《語(yǔ)文課程標(biāo)準(zhǔn)》規(guī)定:7﹣9年級(jí)學(xué)生,要求學(xué)會(huì)制訂自己的閱讀計(jì)劃,廣泛閱讀各種類型的讀物,課外閱讀總量不少于260萬(wàn)字,每學(xué)年閱讀兩三部名著.那么260萬(wàn)用科學(xué)記數(shù)法可表示為()A.26×105 B.2.6×102 C.2.6×106 D.260×1048.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),過(guò)點(diǎn)D作⊙O的切線交BC于點(diǎn)M,切點(diǎn)為N,則DM的長(zhǎng)為()A. B. C. D.9.如圖,在正方形ABCD中,G為CD邊中點(diǎn),連接AG并延長(zhǎng),分別交對(duì)角線BD于點(diǎn)F,交BC邊延長(zhǎng)線于點(diǎn)E.若FG=2,則AE的長(zhǎng)度為()A.6 B.8C.10 D.1210.已知A(,),B(2,)兩點(diǎn)在雙曲線上,且,則m的取值范圍是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,正方形ABCD內(nèi)有兩點(diǎn)E、F滿足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,則正方形ABCD的邊長(zhǎng)為_(kāi)____.12.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點(diǎn)P在以D(4,4)為圓心,1為半徑的圓上運(yùn)動(dòng),且始終滿足∠BPC=90°,則a的最大值是______.13.國(guó)家游泳中心“水立方”是奧運(yùn)會(huì)標(biāo)志性建筑之一,其工程占地面積約為62800m2,將62800用科學(xué)記數(shù)法表示為_(kāi)____.14.解不等式組,則該不等式組的最大整數(shù)解是_____.15.某校為了解學(xué)生最喜歡的球類運(yùn)動(dòng)情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生只寫一類最喜歡的球類運(yùn)動(dòng),以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分那么,其中最喜歡足球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為_(kāi)___________%16.若代數(shù)式在實(shí)數(shù)范圍內(nèi)有意義,則實(shí)數(shù)x的取值范圍為_(kāi)____.三、解答題(共8題,共72分)17.(8分)如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),經(jīng)過(guò)C作CD⊥AB于點(diǎn)D,CF是⊙O的切線,過(guò)點(diǎn)A作AE⊥CF于E,連接AC.(1)求證:AE=AD.(2)若AE=3,CD=4,求AB的長(zhǎng).18.(8分)我市某中學(xué)舉行“中國(guó)夢(mèng)?校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績(jī),各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.根據(jù)圖示填寫下表;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績(jī)較好;計(jì)算兩隊(duì)決賽成績(jī)的方差并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.19.(8分)為了解朝陽(yáng)社區(qū)歲居民最喜歡的支付方式,某興趣小組對(duì)社區(qū)內(nèi)該年齡段的部分居民展開(kāi)了隨機(jī)問(wèn)卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:求參與問(wèn)卷調(diào)查的總?cè)藬?shù).補(bǔ)全條形統(tǒng)計(jì)圖.該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).20.(8分)如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的長(zhǎng).21.(8分)在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(3,0),點(diǎn)B(0,4),把△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得△AB′O′,點(diǎn)B,O旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為B′,O.(1)如圖1,當(dāng)旋轉(zhuǎn)角為90°時(shí),求BB′的長(zhǎng);(2)如圖2,當(dāng)旋轉(zhuǎn)角為120°時(shí),求點(diǎn)O′的坐標(biāo);(3)在(2)的條件下,邊OB上的一點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為P′,當(dāng)O′P+AP′取得最小值時(shí),求點(diǎn)P′的坐標(biāo).(直接寫出結(jié)果即可)22.(10分)如圖,將等腰直角三角形紙片ABC對(duì)折,折痕為CD.展平后,再將點(diǎn)B折疊在邊AC上(不與A、C重合),折痕為EF,點(diǎn)B在AC上的對(duì)應(yīng)點(diǎn)為M,設(shè)CD與EM交于點(diǎn)P,連接PF.已知BC=1.(1)若M為AC的中點(diǎn),求CF的長(zhǎng);(2)隨著點(diǎn)M在邊AC上取不同的位置,①△PFM的形狀是否發(fā)生變化?請(qǐng)說(shuō)明理由;②求△PFM的周長(zhǎng)的取值范圍.23.(12分)如圖,四邊形ABCD中,E點(diǎn)在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求證:△ABC與△DEC全等.24.如圖,在△ABC中,AB=BC,CD⊥AB于點(diǎn)D,CD=BD.BE平分∠ABC,點(diǎn)H是BC邊的中點(diǎn).連接DH,交BE于點(diǎn)G.連接CG.(1)求證:△ADC≌△FDB;(2)求證:(3)判斷△ECG的形狀,并證明你的結(jié)論.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】【分析】根據(jù)中心對(duì)稱圖形的定義逐項(xiàng)進(jìn)行判斷即可得.【詳解】A、是中心對(duì)稱圖形,故此選項(xiàng)正確;B、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;C、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;D、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤,故選A.【點(diǎn)睛】本題主要考查了中心對(duì)稱圖形,熟練掌握中心對(duì)稱圖形的定義是解題的關(guān)鍵;把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形.2、D【解析】

根據(jù)二次根式有意義的條件即可求出答案.【詳解】由題意可知:解得:m≤3且m≠0故選D.【點(diǎn)睛】本題考查二次根式有意義的條件,解題的關(guān)鍵是熟練運(yùn)用二次根式有意義的條件,本題屬于基礎(chǔ)題型.3、C【解析】試題分析:連接EF交AC于點(diǎn)M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點(diǎn):菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).4、B【解析】試題解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的對(duì)角線把矩形分成了四個(gè)面積相等的三角形,∴陰影部分的面積=扇形AOD的面積+扇形BOC的面積=2扇形BOC的面積==10π.故選B.5、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質(zhì).注意:根據(jù)斜邊和直角邊對(duì)應(yīng)相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點(diǎn)睛:熟練運(yùn)用等腰直角三角形三線合一性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關(guān)鍵.6、D【解析】

根據(jù)同底數(shù)冪的除法、乘法的運(yùn)算方法,冪的乘方與積的乘方的運(yùn)算方法,以及單項(xiàng)式乘單項(xiàng)式的方法,逐項(xiàng)判定即可.【詳解】∵(a3)2=a6,∴選項(xiàng)A不符合題意;∵(-x)2÷x=x,∴選項(xiàng)B不符合題意;∵a3(-a)2=a5,∴選項(xiàng)C不符合題意;∵(-2x2)3=-8x6,∴選項(xiàng)D符合題意.故選D.【點(diǎn)睛】此題主要考查了同底數(shù)冪的除法、乘法的運(yùn)算方法,冪的乘方與積的乘方的運(yùn)算方法,以及單項(xiàng)式乘單項(xiàng)式的方法,要熟練掌握.7、C【解析】

科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同當(dāng)原數(shù)絕對(duì)值時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值時(shí),n是負(fù)數(shù).【詳解】260萬(wàn)=2600000=.故選C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.8、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點(diǎn):1.切線的性質(zhì);3.矩形的性質(zhì).9、D【解析】

根據(jù)正方形的性質(zhì)可得出AB∥CD,進(jìn)而可得出△ABF∽△GDF,根據(jù)相似三角形的性質(zhì)可得出=2,結(jié)合FG=2可求出AF、AG的長(zhǎng)度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【詳解】解:∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故選:D.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì),利用相似三角形的性質(zhì)求出AF的長(zhǎng)度是解題的關(guān)鍵.10、D【解析】

∵A(,),B(2,)兩點(diǎn)在雙曲線上,∴根據(jù)點(diǎn)在曲線上,點(diǎn)的坐標(biāo)滿足方程的關(guān)系,得.∵,∴,解得.故選D.【詳解】請(qǐng)?jiān)诖溯斎朐斀?!二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】分析:連接AC,交EF于點(diǎn)M,可證明△AEM∽△CMF,根據(jù)條件可求得AE、EM、FM、CF,再結(jié)合勾股定理可求得AB.詳解:連接AC,交EF于點(diǎn)M,∵AE丄EF,EF丄FC,∴∠E=∠F=90°,∵∠AME=∠CMF,∴△AEM∽△CFM,∴,∵AE=1,EF=FC=3,∴,∴EM=,F(xiàn)M=,在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,∴AC=AM+CM=5,在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,∴AB=,即正方形的邊長(zhǎng)為.故答案為:.點(diǎn)睛:本題主要考查相似三角形的判定和性質(zhì)及正方形的性質(zhì),構(gòu)造三角形相似利用相似三角形的對(duì)應(yīng)邊成比例求得AC的長(zhǎng)是解題的關(guān)鍵,注意勾股定理的應(yīng)用.12、1【解析】

首先證明AB=AC=a,根據(jù)條件可知PA=AB=AC=a,求出⊙D上到點(diǎn)A的最大距離即可解決問(wèn)題.【詳解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如圖延長(zhǎng)AD交⊙D于P′,此時(shí)AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值為1.故答案為1.【點(diǎn)睛】圓外一點(diǎn)到圓上一點(diǎn)的距離最大值為點(diǎn)到圓心的距離加半徑,最小值為點(diǎn)到圓心的距離減去半徑.13、6.28×1.【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】62800用科學(xué)記數(shù)法表示為6.28×1.故答案為6.28×1.【點(diǎn)睛】此題主要考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.14、x=1.【解析】

先求出每個(gè)不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數(shù)解.【詳解】,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數(shù)解為0,1,2,1,則該不等式組的最大整數(shù)解是x=1.故答案為:x=1.【點(diǎn)睛】考查不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.15、1%【解析】

依據(jù)最喜歡羽毛球的學(xué)生數(shù)以及占被調(diào)查總?cè)藬?shù)的百分比,即可得到被調(diào)查總?cè)藬?shù),進(jìn)而得出最喜歡籃球的學(xué)生數(shù)以及最喜歡足球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比.【詳解】∵被調(diào)查學(xué)生的總數(shù)為10÷20%=50人,

∴最喜歡籃球的有50×32%=16人,

則最喜歡足球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比=×100%=1%,

故答案為:1.【點(diǎn)睛】本題主要考查扇形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖是用整個(gè)圓表示總數(shù)用圓內(nèi)各個(gè)扇形的大小表示各部分?jǐn)?shù)量占總數(shù)的百分?jǐn)?shù).通過(guò)扇形統(tǒng)計(jì)圖可以很清楚地表示出各部分?jǐn)?shù)量同總數(shù)之間的關(guān)系.16、x≤1【解析】

根據(jù)二次根式有意義的條件可求出x的取值范圍.【詳解】由題意可知:1﹣x≥0,∴x≤1故答案為:x≤1.【點(diǎn)睛】本題考查二次根式有意義的條件,解題的關(guān)鍵是利用被開(kāi)方數(shù)是非負(fù)數(shù)解答即可.三、解答題(共8題,共72分)17、(1)證明見(jiàn)解析(2)【解析】

(1)連接OC,根據(jù)垂直定義和切線性質(zhì)定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據(jù)勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【詳解】(1)證明:連接OC,如圖所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圓O的切線,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:連接CB,如圖所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根據(jù)勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB為直徑,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【點(diǎn)睛】本題考核知識(shí)點(diǎn):切線性質(zhì),銳角三角函數(shù)的應(yīng)用.解題關(guān)鍵點(diǎn):由全等三角形性質(zhì)得到線段相等,根據(jù)直角三角形性質(zhì)得到相應(yīng)等式.18、(1)

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成績(jī)好些(3)初中代表隊(duì)選手成績(jī)較為穩(wěn)定【解析】解:(1)填表如下:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成績(jī)好些.∵兩個(gè)隊(duì)的平均數(shù)都相同,初中部的中位數(shù)高,∴在平均數(shù)相同的情況下中位數(shù)高的初中部成績(jī)好些.(3)∵,,∴<,因此,初中代表隊(duì)選手成績(jī)較為穩(wěn)定.(1)根據(jù)成績(jī)表加以計(jì)算可補(bǔ)全統(tǒng)計(jì)表.根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計(jì)意義回答.(2)根據(jù)平均數(shù)和中位數(shù)的統(tǒng)計(jì)意義分析得出即可.(3)分別求出初中、高中部的方差比較即可.19、(1)參與問(wèn)卷調(diào)查的總?cè)藬?shù)為500人;(2)補(bǔ)全條形統(tǒng)計(jì)圖見(jiàn)解析;(3)這些人中最喜歡微信支付方式的人數(shù)約為2800人.【解析】

(1)根據(jù)喜歡支付寶支付的人數(shù)÷其所占各種支付方式的比例=參與問(wèn)卷調(diào)查的總?cè)藬?shù),即可求出結(jié)論;

(2)根據(jù)喜歡現(xiàn)金支付的人數(shù)(41~60歲)=參與問(wèn)卷調(diào)查的總?cè)藬?shù)×現(xiàn)金支付所占各種支付方式的比例-15,即可求出喜歡現(xiàn)金支付的人數(shù)(41~60歲),再將條形統(tǒng)計(jì)圖補(bǔ)充完整即可得出結(jié)論;

(3)根據(jù)喜歡微信支付方式的人數(shù)=社區(qū)居民人數(shù)×微信支付所占各種支付方式的比例,即可求出結(jié)論.【詳解】(1)(人.答:參與問(wèn)卷調(diào)查的總?cè)藬?shù)為500人.(2)(人.補(bǔ)全條形統(tǒng)計(jì)圖,如圖所示.(3)(人.答:這些人中最喜歡微信支付方式的人數(shù)約為2800人.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用樣本估計(jì)總體,解題的關(guān)鍵是:(1)觀察統(tǒng)計(jì)圖找出數(shù)據(jù),再列式計(jì)算;(2)通過(guò)計(jì)算求出喜歡現(xiàn)金支付的人數(shù)(41~60歲);(3)根據(jù)樣本的比例×總?cè)藬?shù),估算出喜歡微信支付方式的人數(shù).20、BD=2.【解析】

作DM⊥BC,交BC延長(zhǎng)線于M,連接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,證出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的對(duì)應(yīng)邊成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可.【詳解】作DM⊥BC,交BC延長(zhǎng)線于M,連接AC,如圖所示:則∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴,∴CM=2AB=6,DM=2BC=8,∴BM=BC+CM=10,∴BD===,【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、勾股定理、勾股定理的逆定理;熟練掌握相似三角形的判定與性質(zhì),證明由勾股定理的逆定理證出△ACD是直角三角形是解決問(wèn)題的關(guān)鍵.21、(1)5;(2)O'(,);(3)P'(,).【解析】

(1)先求出AB.利用旋轉(zhuǎn)判斷出△ABB'是等腰直角三角形,即可得出結(jié)論;(2)先判斷出∠HAO'=60°,利用含30度角的直角三角形的性質(zhì)求出AH,OH,即可得出結(jié)論;(3)先確定出直線O'C的解析式,進(jìn)而確定出點(diǎn)P的坐標(biāo),再利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋轉(zhuǎn)知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;(2)如圖2,過(guò)點(diǎn)O'作O'H⊥x軸于H,由旋轉(zhuǎn)知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();(3)由旋轉(zhuǎn)知,AP=AP',∴O'P+AP'=O'P+AP.如圖3,作A關(guān)于y軸的對(duì)稱點(diǎn)C,連接O'C交y軸于P,∴O'P+AP=O'P+CP=O'C,此時(shí),O'P+AP的值最?。唿c(diǎn)C與點(diǎn)A關(guān)于y軸對(duì)稱,∴C(﹣3,0).∵O'(),∴直線O'C的解析式為y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D.∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'().【點(diǎn)睛】本題是幾何變換綜合題,考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),含30度角的直角三角形的性質(zhì),構(gòu)造出直角三角形是解答本題的關(guān)鍵.22、(1)CF=;(2)①△PFM的形狀是等腰直角三角形,不會(huì)發(fā)生變化,理由見(jiàn)解析;②△PFM的周長(zhǎng)滿足:2+2<(1+)y<1+1.【解析】

(1)由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,根據(jù)FM2=CF2+CM2,構(gòu)建方程即可解決問(wèn)題;(2)①△PFM的形狀是等腰直角三角形,想辦法證明△POF∽△MOC,可得∠PFO=∠MCO=15°,延長(zhǎng)即可解決問(wèn)題;②設(shè)FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周長(zhǎng)=(1+)y,由2<y<1,可得結(jié)論.【詳解】(1)∵M(jìn)為AC的中點(diǎn),∴CM=AC=BC=2,由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,F(xiàn)M2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形狀是等腰直角三角形,不會(huì)發(fā)生變化,理由如下:由折疊的性質(zhì)可知,∠PMF=∠B=15°,∵CD是中垂線,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴=,∴=,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論