版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
山東省泰安市大津口中學2024年中考試題猜想數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元2.定義運算:a?b=2ab.若a,b是方程x2+x-m=0(m>0)的兩個根,則(a+1)?a-(b+1)?b的值為()A.0B.2C.4mD.-4m3.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數(shù)為()A.60° B.65° C.70° D.75°4.如圖,CE,BF分別是△ABC的高線,連接EF,EF=6,BC=10,D、G分別是EF、BC的中點,則DG的長為()A.6 B.5 C.4 D.35.如圖,圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,按此規(guī)律,則第(n)個圖形中面積為1的正方形的個數(shù)為()A. B. C. D.6.如圖,點A、B、C都在⊙O上,若∠AOC=140°,則∠B的度數(shù)是()A.70° B.80° C.110° D.140°7.如圖,平行于x軸的直線與函數(shù),的圖象分別相交于A,B兩點,點A在點B的右側(cè),C為x軸上的一個動點,若的面積為4,則的值為A.8 B. C.4 D.8.下列各數(shù)3.1415926,,,,,中,無理數(shù)有()A.2個 B.3個 C.4個 D.5個9.tan60°的值是()A. B. C. D.10.如圖是根據(jù)我市某天七個整點時的氣溫繪制成的統(tǒng)計圖,則這七個整點時氣溫的中位數(shù)和平均數(shù)分別是()A.30,28B.26,26C.31,30D.26,2211.下列各運算中,計算正確的是()A.a(chǎn)12÷a3=a4 B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2 D.2a?3a=6a212.若關于的一元二次方程的一個根是0,則的值是()A.1 B.-1 C.1或-1 D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC14.如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯(lián)結(jié)FC,當△EFC是直角三角形時,那么BE的長為______.15.如圖,在四個小正方體搭成的幾何體中,每個小正方體的棱長都是1,則該幾何體的三視圖的面積之和是_____.16.如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1,),則點C的坐標為_____.17.若關于x的方程有兩個相等的實數(shù)根,則m的值是_________.18.如圖,在菱形ABCD中,AB=BD.點E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點G,連接CG與BD相交于點H.下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF.其中正確的結(jié)論有_____.(填序號)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C為圓心,R為半徑所作的圓與斜邊AB只有一個公共點,則R的取值范圍是多少?20.(6分)體育老師為了解本校九年級女生1分鐘“仰臥起坐”體育測試項目的達標情況,從該校九年級136名女生中,隨機抽取了20名女生,進行了1分鐘仰臥起坐測試,獲得數(shù)據(jù)如下:收集數(shù)據(jù):抽取20名女生的1分鐘仰臥起坐測試成績(個)如下:3846425255435946253835455148574947535849(1)整理、描述數(shù)據(jù):請你按如下分組整理、描述樣本數(shù)據(jù),把下列表格補充完整:范圍25≤x≤2930≤x≤3435≤x≤3940≤x≤4445≤x≤4950≤x≤5455≤x≤59人數(shù)(說明:每分鐘仰臥起坐個數(shù)達到49個及以上時在中考體育測試中可以得到滿分)(2)分析數(shù)據(jù):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率如下表所示:平均數(shù)中位數(shù)滿分率46.847.545%得出結(jié)論:①估計該校九年級女生在中考體育測試中1分鐘“仰臥起坐”項目可以得到滿分的人數(shù)為;②該中心所在區(qū)縣的九年級女生的1分鐘“仰臥起坐”總體測試成績?nèi)缦拢浩骄鶖?shù)中位數(shù)滿分率45.34951.2%請你結(jié)合該校樣本測試成績和該區(qū)縣總體測試成績,為該校九年級女生的1分鐘“仰臥起坐”達標情況做一下評估,并提出相應建議.21.(6分)先化簡,再求值:1+xx2-122.(8分)如圖1,□OABC的邊OC在y軸的正半軸上,OC=3,A(2,1),反比例函數(shù)y=(x>0)的圖象經(jīng)過點B.(1)求點B的坐標和反比例函數(shù)的關系式;(2)如圖2,將線段OA延長交y=(x>0)的圖象于點D,過B,D的直線分別交x軸、y軸于E,F(xiàn)兩點,①求直線BD的解析式;②求線段ED的長度.23.(8分)已知:如圖,在菱形中,點,,分別為,,的中點,連接,,,.求證:;當與滿足什么關系時,四邊形是正方形?請說明理由.24.(10分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.求證:BC是⊙O的切線;已知AD=3,CD=2,求BC的長.25.(10分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:接受問卷調(diào)查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為度;請補全條形統(tǒng)計圖;若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).26.(12分)綜合與實踐﹣猜想、證明與拓廣問題情境:數(shù)學課上同學們探究正方形邊上的動點引發(fā)的有關問題,如圖1,正方形ABCD中,點E是BC邊上的一點,點D關于直線AE的對稱點為點F,直線DF交AB于點H,直線FB與直線AE交于點G,連接DG,CG.猜想證明(1)當圖1中的點E與點B重合時得到圖2,此時點G也與點B重合,點H與點A重合.同學們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關系和位置關系,其結(jié)論為:;(2)希望小組的同學發(fā)現(xiàn),圖1中的點E在邊BC上運動時,(1)中結(jié)論始終成立,為證明這兩個結(jié)論,同學們展開了討論:小敏:根據(jù)軸對稱的性質(zhì),很容易得到“GF與GD的數(shù)量關系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設圖中不斷變化的角∠BAF的度數(shù)為n,并設法用n表示圖中的一些角,可證明結(jié)論.請你參考同學們的思路,完成證明;(3)創(chuàng)新小組的同學在圖1中,發(fā)現(xiàn)線段CG∥DF,請你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).27.(12分)如圖,一只螞蟻從點A沿數(shù)軸向右直爬2個單位到達點B,點A表示﹣,設點B所表示的數(shù)為m.求m的值;求|m﹣1|+(m+6)0的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
用單價乘數(shù)量得出買2千克蘋果和3千克香蕉的總價,再進一步相加即可.【詳解】買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【點睛】本題主要考查列代數(shù)式,總價=單價乘數(shù)量.2、A【解析】【分析】由根與系數(shù)的關系可得a+b=-1然后根據(jù)所給的新定義運算a?b=2ab對式子(a+1)?a-(b+1)?b用新定義運算展開整理后代入進行求解即可.【詳解】∵a,b是方程x2+x-m=0(m>0)的兩個根,∴a+b=-1,∵定義運算:a?b=2ab,∴(a+1)?a-(b+1)?b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故選A.【點睛】本題考查了一元二次方程根與系數(shù)的關系,新定義運算等,理解并能運用新定義運算是解題的關鍵.3、C【解析】
由等腰三角形的性質(zhì)可求∠ACD=70°,由平行線的性質(zhì)可求解.【詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.【點睛】本題考查了等腰三角形的性質(zhì),平行線的性質(zhì),是基礎題.4、C【解析】
連接EG、FG,根據(jù)斜邊中線長為斜邊一半的性質(zhì)即可求得EG=FG=BC,因為D是EF中點,根據(jù)等腰三角形三線合一的性質(zhì)可得GD⊥EF,再根據(jù)勾股定理即可得出答案.【詳解】解:連接EG、FG,EG、FG分別為直角△BCE、直角△BCF的斜邊中線,∵直角三角形斜邊中線長等于斜邊長的一半∴EG=FG=BC=×10=5,∵D為EF中點∴GD⊥EF,即∠EDG=90°,又∵D是EF的中點,∴,在中,,故選C.【點睛】本題考查了直角三角形中斜邊上中線等于斜邊的一半的性質(zhì)、勾股定理以及等腰三角形三線合一的性質(zhì),本題中根據(jù)等腰三角形三線合一的性質(zhì)求得GD⊥EF是解題的關鍵.5、C【解析】
由圖形可知:第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規(guī)律,第n個圖形中面積為1的正方形有2+3+4+…+n+1=.【詳解】第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規(guī)律,第n個圖形中面積為1的正方形有2+3+4+…+(n+1)=個.【點睛】本題考查了規(guī)律的知識點,解題的關鍵是根據(jù)圖形的變化找出規(guī)律.6、C【解析】分析:作對的圓周角∠APC,如圖,利用圓內(nèi)接四邊形的性質(zhì)得到∠P=40°,然后根據(jù)圓周角定理求∠AOC的度數(shù).詳解:作對的圓周角∠APC,如圖,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故選:C.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.7、A【解析】【分析】設,,根據(jù)反比例函數(shù)圖象上點的坐標特征得出,根據(jù)三角形的面積公式得到,即可求出.【詳解】軸,,B兩點縱坐標相同,設,,則,,,,故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,三角形的面積,熟知點在函數(shù)的圖象上,則點的坐標滿足函數(shù)的解析式是解題的關鍵.8、B【解析】
根據(jù)無理數(shù)的定義即可判定求解.【詳解】在3.1415926,,,,,中,,3.1415926,是有理數(shù),,,是無理數(shù),共有3個,故選:B.【點睛】本題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學習的無理數(shù)有:等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).9、A【解析】
根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】tan60°=故選:A.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關鍵.10、B.【解析】試題分析:由圖可知,把7個數(shù)據(jù)從小到大排列為22,22,23,1,28,30,31,中位數(shù)是第4位數(shù),第4位是1,所以中位數(shù)是1.平均數(shù)是(22×2+23+1+28+30+31)÷7=1,所以平均數(shù)是1.故選B.考點:中位數(shù);加權(quán)平均數(shù).11、D【解析】【分析】根據(jù)同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法的法則逐項計算即可得.【詳解】A、原式=a9,故A選項錯誤,不符合題意;B、原式=27a6,故B選項錯誤,不符合題意;C、原式=a2﹣2ab+b2,故C選項錯誤,不符合題意;D、原式=6a2,故D選項正確,符合題意,故選D.【點睛】本題考查了同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法等運算,熟練掌握各運算的運算法則是解本題的關鍵.12、B【解析】
根據(jù)一元二次方程的解的定義把x=0代入方程得到關于a的一元二次方程,然后解此方程即可【詳解】把x=0代入方程得,解得a=±1.∵原方程是一元二次方程,所以
,所以,故故答案為B【點睛】本題考查了一元二次方程的解的定義:使一元二次方程左右兩邊成立的未知數(shù)的值叫一元二次方程的解.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、60【解析】∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°∴θ=60°.14、1.5或3【解析】根據(jù)矩形的性質(zhì),利用勾股定理求得AC==5,由題意,可分△EFC是直角三角形的兩種情況:如圖1,當∠EFC=90°時,由∠AFE=∠B=90°,∠EFC=90°,可知點F在對角線AC上,且AE是∠BAC的平分線,所以可得BE=EF,然后再根據(jù)相似三角形的判定與性質(zhì),可知△ABC∽△EFC,即,代入數(shù)據(jù)可得,解得BE=1.5;如圖2,當∠FEC=90°,可知四邊形ABEF是正方形,從而求出BE=AB=3.故答案為1.5或3.點睛:此題主要考查了翻折變換的性質(zhì),勾股定理,矩形的性質(zhì),正方形的判定與性質(zhì),利用勾股定理列方程求解是常用的方法,本題難點在于分類討論,做出圖形更形象直觀.15、1【解析】
根據(jù)三視圖的定義求解即可.【詳解】主視圖是第一層是三個小正方形,第二層右邊一個小正方形,主視圖的面積是4,俯視圖是三個小正方形,俯視圖的面積是3,左視圖是下邊一個小正方形,第二層一個小正方形,左視圖的面積是2,幾何體的三視圖的面積之和是4+3+2=1,故答案為1.【點睛】本題考查了簡單組合體的三視圖,利用三視圖的定義是解題關鍵.16、(﹣,1)【解析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(﹣,1),故答案為(,1).點睛:本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,坐標與圖形的性質(zhì),解題的關鍵是學會添加常用的輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.注意:距離都是非負數(shù),而坐標可以是負數(shù),在由距離求坐標時,需要加上恰當?shù)姆?17、m=-【解析】
根據(jù)題意可以得到△=0,從而可以求得m的值.【詳解】∵關于x的方程有兩個相等的實數(shù)根,∴△=,解得:.故答案為.18、①②③【解析】
(1)由已知條件易得∠A=∠BDF=60°,結(jié)合BD=AB=AD,AE=DF,即可證得△AED≌△DFB,從而說明結(jié)論①正確;(2)由已知條件可證點B、C、D、G四點共圓,從而可得∠CDN=∠CBM,如圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,結(jié)合CB=CD即可證得△CBM≌△CDN,由此可得S四邊形BCDG=S四邊形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,從而可得結(jié)論②是正確的;(3)過點F作FK∥AB交DE于點K,由此可得△DFK∽△DAE,△GFK∽△GBE,結(jié)合AF=2DF和相似三角形的性質(zhì)即可證得結(jié)論④成立.【詳解】(1)∵四邊形ABCD是菱形,BD=AB,∴AB=BD=BC=DC=DA,∴△ABD和△CBD都是等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,∴△AED≌△DFB,即結(jié)論①正確;(2)∵△AED≌△DFB,△ABD和△DBC是等邊三角形,∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,∴點B、C、D、G四點共圓,∴∠CDN=∠CBM,如下圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,∴∠CDN=∠CBM=90°,又∵CB=CD,∴△CBM≌△CDN,∴S四邊形BCDG=S四邊形CMGN=2S△CGN,∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°∴GN=CG,CN=CG,∴S△CGN=CG2,∴S四邊形BCDG=2S△CGN,=CG2,即結(jié)論②是正確的;(3)如下圖,過點F作FK∥AB交DE于點K,∴△DFK∽△DAE,△GFK∽△GBE,∴,,∵AF=2DF,∴,∵AB=AD,AE=DF,AF=2DF,∴BE=2AE,∴,∴BG=6FG,即結(jié)論③成立.綜上所述,本題中正確的結(jié)論是:故答案為①②③點睛:本題是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多種幾何圖形的判定與性質(zhì)的題,題目難度較大,熟悉所涉及圖形的性質(zhì)和判定方法,作出如圖所示的輔助線是正確解答本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、R=125或R=【解析】
解:當圓與斜邊相切時,則R=125,即圓與斜邊有且只有一個公共點,當R=12考點:圓與直線的位置關系.20、(1)補充表格見解析;(2)①61;②見解析.【解析】
(1)根據(jù)所給數(shù)據(jù)分析補充表格即可.(2)①根據(jù)概率公式計算即可.②根據(jù)平均數(shù)、中位數(shù)分別進行分析并根據(jù)分析結(jié)果給出建議即可.【詳解】(1)補充表格如下:范圍25≤x≤2930≤x≤3435≤x≤3940≤x≤4445≤x≤4950≤x≤5455≤x≤59人數(shù)1032734(2)①估計該校九年級女生在中考體育測試中1分鐘“仰臥起坐”項目可以得到滿分的人數(shù)為136×≈61,故答案為:61;②從平均數(shù)角度看,該校女生1分鐘仰臥起坐的平均成績高于區(qū)縣水平,整體水平較好;從中位數(shù)角度看,該校成績中等水平偏上的學生比例低于區(qū)縣水平,該校測試成績的滿分率低于區(qū)縣水平;建議:該校在保持學校整體水平的同事,多關注接近滿分的學生,提高滿分成績的人數(shù).【點睛】本題考查的是統(tǒng)計表的綜合運用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.21、3+3【解析】
先化簡分式,再計算x的值,最后把x的值代入化簡后的分式,計算出結(jié)果.【詳解】原式=1+x=1+xx+1=1+1=xx-1當x=2cos30°+tan45°=2×32=3+1時.xx-1=【點睛】本題主要考查了分式的加減及銳角三角函數(shù)值.解決本題的關鍵是掌握分式的運算法則和運算順序.22、(1)B(2,4),反比例函數(shù)的關系式為y=;(2)①直線BD的解析式為y=-x+6;②ED=2【解析】試題分析:(1)過點A作AP⊥x軸于點P,由平行四邊形的性質(zhì)可得BP=4,可得B(2,4),把點B坐標代入反比例函數(shù)解析式中即可;(2)①先求出直線OA的解析式,和反比例函數(shù)解析式聯(lián)立,解方程組得到點D的坐標,再由待定系數(shù)法求得直線BD的解析式;②先求得點E的坐標,過點D分別作x軸的垂線,垂足為G(4,0),由溝谷定理即可求得ED長度.試題解析:(1)過點A作AP⊥x軸于點P,則AP=1,OP=2,又∵AB=OC=3,∴B(2,4).,∵反比例函數(shù)y=(x>0)的圖象經(jīng)過的B,∴4=,∴k=8.∴反比例函數(shù)的關系式為y=;(2)①由點A(2,1)可得直線OA的解析式為y=x.解方程組,得,.∵點D在第一象限,∴D(4,2).由B(2,4),點D(4,2)可得直線BD的解析式為y=-x+6;②把y=0代入y=-x+6,解得x=6,∴E(6,0),過點D分別作x軸的垂線,垂足分別為G,則G(4,0),由勾股定理可得:ED=.點睛:本題考查一次函數(shù)、反比例函數(shù)、平行四邊形等幾何知識,綜合性較強,要求學生有較強的分析問題和解決問題的能力.23、見解析【解析】
(1)由菱形的性質(zhì)得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位線定理證出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)證明△BCE≌△DCF即可;
(2)由(1)得:AE=OE=OF=AF,證出四邊形AEOF是菱形,再證出∠AEO=90°,四邊形AEOF是正方形.【詳解】(1)證明:∵四邊形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵點E,O,F(xiàn)分別為AB,AC,AD的中點,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)當AB⊥BC時,四邊形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四邊形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四邊形AEOF是正方形.【點睛】本題考查了全等三角形、菱形、正方形的性質(zhì),解題的關鍵是熟練的掌握菱形、正方形、全等三角形的性質(zhì).24、(1)證明見解析(2)BC=【解析】
(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點:1.切線的判定;2.相似三角形的判定和性質(zhì).25、(1)60,90;(2)見解析;(3)300人【解析】
(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學生數(shù),繼而求得扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角;(2)由(1)可求得了解的人數(shù),繼而補全條形統(tǒng)計圖;(3)利用樣本估計總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調(diào)查的學生共有:30÷50%=60(人);∴扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補全條形統(tǒng)計圖得:(3)根據(jù)題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為300人.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖的相關知識點.26、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】
(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點D關于直線AE的對稱點為點F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 走進小學活動方案樣本(3篇)
- 二零二五年度二手房交易稅費計算合同樣本3篇
- 二零二五年度辦公大樓智能化系統(tǒng)運維合同2篇
- 2025年度涂料涂料工程招標代理服務合同范本3篇
- 2025年三年級上學期英語教師工作總結(jié)范文(2篇)
- 煤礦綜掘綜合防塵管理制度(3篇)
- 自學書法系統(tǒng)課程設計
- 輪形課程設計
- 二零二五年度個人住房裝修貸款保證合同3篇
- 2025年高一班級工作計劃(二篇)
- 三年級《剪窗花》課件
- 學前兒童發(fā)展心理學(高職)全套教學課件
- 2023年手機維修行業(yè)分析報告及未來五至十年行業(yè)發(fā)展報告
- 【SPD】醫(yī)院器械耗材SPD管理技術方案
- 未成年人保護法ppt
- 中國各省省會-地級市-縣級市明細表-
- 變曲率雙向可調(diào)收縫式翻升模板施工工法
- 2023年中國社會科學院外國文學研究所專業(yè)技術人員招聘3人(共500題含答案解析)筆試歷年難、易錯考點試題含答案附詳解
- 2023年廣東石油化工學院公開招聘部分新機制合同工20名高頻考點題庫(共500題含答案解析)模擬練習試卷
- 一種基于STM32的智能門鎖系統(tǒng)的設計
- 貨車安全隱患排查表
評論
0/150
提交評論