版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東棗莊2024年中考數(shù)學模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知圓錐的側面積為10πcm2,側面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm2.若二次函數(shù)y=ax2+bx+c的x與y的部分對應值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點坐標是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)3.如下字體的四個漢字中,是軸對稱圖形的是()A. B. C. D.4.如圖,矩形是由三個全等矩形拼成的,與,,,,分別交于點,設,,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.125.正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數(shù)是()A.36° B.54° C.72° D.108°6.二次函數(shù)y=3(x﹣1)2+2,下列說法正確的是()A.圖象的開口向下B.圖象的頂點坐標是(1,2)C.當x>1時,y隨x的增大而減小D.圖象與y軸的交點坐標為(0,2)7.如圖,已知AB∥CD,DE⊥AC,垂足為E,∠A=120°,則∠D的度數(shù)為()A.30° B.60° C.50° D.40°8.某班
30名學生的身高情況如下表:身高人數(shù)134787則這
30
名學生身高的眾數(shù)和中位數(shù)分別是A., B.,C., D.,9.已知點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=kx(k<0)的圖象上,若x1<x2<0<x3,則y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y210.在一次男子馬拉松長跑比賽中,隨機抽取了10名選手,記錄他們的成績(所用的時間)如下:選手12345678910時間(min)129136140145146148154158165175由此所得的以下推斷不正確的是()A.這組樣本數(shù)據(jù)的平均數(shù)超過130B.這組樣本數(shù)據(jù)的中位數(shù)是147C.在這次比賽中,估計成績?yōu)?30min的選手的成績會比平均成績差D.在這次比賽中,估計成績?yōu)?42min的選手,會比一半以上的選手成績要好二、填空題(共7小題,每小題3分,滿分21分)11.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E為線段AB的中點,D點是射線AC上的一個動點,將△ADE沿線段DE翻折,得到△A′DE,當A′D⊥AB時,則線段AD的長為_____.12.已知拋物線的部分圖象如圖所示,根據(jù)函數(shù)圖象可知,當y>0時,x的取值范圍是__.13.分解因式:2x2﹣8xy+8y2=.14.如圖,直線y=x與雙曲線y=交于A,B兩點,OA=2,點C在x軸的正半軸上,若∠ACB=90°,則點C的坐標為______.15.某公司銷售一種進價為21元的電子產(chǎn)品,按標價的九折銷售,仍可獲利20%,則這種電子產(chǎn)品的標價為_________元.16.如圖,已知∠A+∠C=180°,∠APM=118°,則∠CQN=_____°.17.方程=1的解是___.三、解答題(共7小題,滿分69分)18.(10分)小明準備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機的一個機翼,請你根據(jù)圖中的數(shù)據(jù)幫小明計算出CD的長度.(結果保留根號).19.(5分)如圖①,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點M,N是BD邊上的任意兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關系,并說明理由.在圖①中,若EG=4,GF=6,求正方形ABCD的邊長.20.(8分)如圖,在△ABC中,∠ACB=90°,點D是AB上一點,以BD為直徑的⊙O和AB相切于點P.(1)求證:BP平分∠ABC;(2)若PC=1,AP=3,求BC的長.21.(10分)平面直角坐標系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點C,與x軸正半軸相交于點A,OA=OC,與x軸的另一個交點為B,對稱軸是直線x=1,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)拋物線的對稱軸與x軸相交于點M,求∠PMC的正切值;(3)點Q在y軸上,且△BCQ與△CMP相似,求點Q的坐標.22.(10分)九(1)班針對“你最喜愛的課外活動項目”對全班學生進行調(diào)查(每名學生分別選一個活動項目),并根據(jù)調(diào)查結果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.根據(jù)以上信息解決下列問題:,;扇形統(tǒng)計圖中機器人項目所對應扇形的圓心角度數(shù)為°;從選航模項目的4名學生中隨機選取2名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的2名學生中恰好有1名男生、1名女生的概率.23.(12分)如圖,在平面直角坐標系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結束,且速度均為1cm/s,設運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設△AEQ的面積為S,求S與t的函數(shù)關系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當△AEQ的面積最大時,平面內(nèi)是否存在一點P,使A、D、Q、P構成的四邊形是菱形,若存在請直接寫出P坐標,若不存在請說明理由?24.(14分)如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)若△CEF與△ABC相似.①當AC=BC=2時,AD的長為;②當AC=3,BC=4時,AD的長為;當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
圓錐的側面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【詳解】設母線長為R,則圓錐的側面積==10π,∴R=10cm,故選C.【點睛】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關鍵.2、C【解析】分析:由表中所給數(shù)據(jù),可求得二次函數(shù)解析式,則可求得其頂點坐標.詳解:當或時,,當時,,,解得,二次函數(shù)解析式為,拋物線的頂點坐標為,故選C.點睛:本題主要考查二次函數(shù)的性質(zhì),利用條件求得二次函數(shù)的解析式是解題的關鍵.3、A【解析】試題分析:根據(jù)軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據(jù)此可知,A為軸對稱圖形.故選A.考點:軸對稱圖形4、B【解析】
由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質(zhì),就可以求出,從而可以求出.【詳解】∵矩形AEHC是由三個全等矩形拼成的,
∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,
∴四邊形BEFD、四邊形DFGC是平行四邊形,
∴BE∥DF∥CG,
∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,
∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【點睛】本題考查了矩形的性質(zhì),平行四邊形的判定和性質(zhì),相似三角形的判定與性質(zhì),三角形的面積公式,得出S2=4S1,S3=9S1是解題關鍵.5、C【解析】正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數(shù)是=72度,故選C.6、B【解析】
由拋物線解析式可求得其開口方向、頂點坐標、最值及增減性,則可判斷四個選項,可求得答案.【詳解】解:A、因為a=3>0,所以開口向上,錯誤;B、頂點坐標是(1,2),正確;C、當x>1時,y隨x增大而增大,錯誤;D、圖象與y軸的交點坐標為(0,5),錯誤;故選:B.【點睛】考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點坐標為(h,k).7、A【解析】分析:根據(jù)平行線的性質(zhì)求出∠C,求出∠DEC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠D的度數(shù)即可.詳解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故選A.點睛:本題考查了平行線的性質(zhì)和三角形內(nèi)角和定理的應用,能根據(jù)平行線的性質(zhì)求出∠C的度數(shù)是解答此題的關鍵.8、A【解析】
找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù).【詳解】解:這組數(shù)據(jù)中,出現(xiàn)的次數(shù)最多,故眾數(shù)為,
共有30人,
第15和16人身高的平均數(shù)為中位數(shù),
即中位數(shù)為:,
故選:A.【點睛】本題考查了眾數(shù)和中位數(shù)的知識,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);將一組數(shù)據(jù)按照從小到大或從大到小的順序排列,如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).9、D【解析】試題分析:反比例函數(shù)y=-的圖象位于二、四象限,在每一象限內(nèi),y隨x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在該函數(shù)圖象上,且x1<x2<0<x3,,∴y3<y1<y2;故選D.考點:反比例函數(shù)的性質(zhì).10、C【解析】分析:要求平均數(shù)只要求出數(shù)據(jù)之和再除以總個數(shù)即可;對于中位數(shù),因圖中是按從小到大的順序排列的,所以只要找出最中間的一個數(shù)(或最中間的兩個數(shù))即可求解.詳解:平均數(shù)=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故這組樣本數(shù)據(jù)的平均數(shù)超過130,A正確,C錯誤;因為表中是按從小到大的順序排列的,一共10名選手,中位數(shù)為第五位和第六位的平均數(shù),故中位數(shù)是(146+148)÷2=147(min),故B正確,D正確.故選C.點睛:本題考查的是平均數(shù)和中位數(shù)的定義.要注意,當所給數(shù)據(jù)有單位時,所求得的平均數(shù)和中位數(shù)與原數(shù)據(jù)的單位相同,不要漏單位.二、填空題(共7小題,每小題3分,滿分21分)11、或.【解析】
①延長A'D交AB于H,則A'H⊥AB,然后根據(jù)勾股定理算出AB,推斷出△ADH∽△ABC,即可解答此題②同①的解題思路一樣【詳解】解:分兩種情況:①如圖1所示:設AD=x,延長A'D交AB于H,則A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB==13,∵∠A=∠A,∴△ADH∽△ABC,∴,即,解得:DH=x,AH=x,∵E是AB的中點,∴AE=AB=,∴HE=AE﹣AH=﹣x,由折疊的性質(zhì)得:A'D=AD=x,A'E=AE=,∴sin∠A=sin∠A'=,解得:x=;②如圖2所示:設AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=,DH=x,∴A'H=A'D﹣DH=x﹣=x,∴cos∠A=cos∠A'=,解得:x=;綜上所述,AD的長為或.故答案為或.【點睛】此題考查了勾股定理,三角形相似,關鍵在于做輔助線12、【解析】
根據(jù)拋物線的對稱軸以及拋物線與x軸的一個交點,確定拋物線與x軸的另一個交點,再結合圖象即可得出答案.【詳解】解:根據(jù)二次函數(shù)圖象可知:拋物線的對稱軸為直線,與x軸的一個交點為(-1,0),∴拋物線與x軸的另一個交點為(3,0),結合圖象可知,當y>0時,即x軸上方的圖象,對應的x的取值范圍是,故答案為:.【點睛】本題考查了二次函數(shù)與不等式的問題,解題的關鍵是通過圖象確定拋物線與x軸的另一個交點,并熟悉二次函數(shù)與不等式的關系.13、1(x﹣1y)1【解析】試題分析:1x1﹣8xy+8y1=1(x1﹣4xy+4y1)=1(x﹣1y)1.故答案為:1(x﹣1y)1.考點:提公因式法與公式法的綜合運用14、(2,0)【解析】
根據(jù)直線y=x與雙曲線y=交于A,B兩點,OA=2,可得AB=2AO=4,再根據(jù)Rt△ABC中,OC=AB=2,即可得到點C的坐標【詳解】如圖所示,∵直線y=x與雙曲線y=交于A,B兩點,OA=2,∴AB=2AO=4,又∵∠ACB=90°,∴Rt△ABC中,OC=AB=2,又∵點C在x軸的正半軸上,∴C(2,0),故答案為(2,0).【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)交點問題,解決問題的關鍵是利用直角三角形斜邊上中線的性質(zhì)得到OC的長.15、28【解析】設這種電子產(chǎn)品的標價為x元,由題意得:0.9x?21=21×20%,解得:x=28,所以這種電子產(chǎn)品的標價為28元.故答案為28.16、1【解析】
先根據(jù)同旁內(nèi)角互補兩直線平行知AB∥CD,據(jù)此依據(jù)平行線性質(zhì)知∠APM=∠CQM=118°,由鄰補角定義可得答案.【詳解】解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案為:1.【點睛】本題主要考查平行線的判定與性質(zhì),解題的關鍵是掌握平行線的判定是由角的數(shù)量關系判斷兩直線的位置關系.平行線的性質(zhì)是由平行關系來尋找角的數(shù)量關系.17、x=﹣4【解析】
分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】去分母得:3+2x=x﹣1,解得:x=﹣4,經(jīng)檢驗x=﹣4是分式方程的解.【點睛】此題考查了解分式方程,利用了轉化的思想,解分式方程注意要檢驗.三、解答題(共7小題,滿分69分)18、CD的長度為17﹣17cm.【解析】
在直角三角形中用三角函數(shù)求出FD,BE的長,而FC=AE=AB+BE,而CD=FC-FD,從而得到答案.【詳解】解:由題意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,則CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的長度為17﹣17cm.【點睛】本題主要考查了在直角三角形中三角函數(shù)的應用,解本題的要點在于求出FC與FD的長度,即可求出答案.19、(1)45°.(1)MN1=ND1+DH1.理由見解析;(3)11.【解析】
(1)先根據(jù)AG⊥EF得出△ABE和△AGE是直角三角形,再根據(jù)HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出結論;(1)由旋轉的性質(zhì)得出∠BAM=∠DAH,再根據(jù)SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根據(jù)勾股定理即可得出結論;(3)設正方形ABCD的邊長為x,則CE=x-4,CF=x-2,再根據(jù)勾股定理即可得出x的值.【詳解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋轉可知:∠BAM=∠DAH,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.在△AMN與△AHN中,,∴△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.設正方形ABCD的邊長為x,則CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解這個方程,得x1=11,x1=-1(不合題意,舍去).∴正方形ABCD的邊長為11.【點睛】本題考查的是幾何變換綜合題,涉及到三角形全等的判定與性質(zhì)、勾股定理、正方形的性質(zhì)等知識,難度適中.20、(1)證明見解析;(2).【解析】試題分析:(1)連接OP,首先證明OP∥BC,推出∠OPB=∠PBC,由OP=OB,推出∠OPB=∠OBP,由此推出∠PBC=∠OBP;
(2)作PH⊥AB于H.首先證明PC=PH=1,在Rt△APH中,求出AH,由△APH∽△ABC,求出AB、BH,由Rt△PBC≌Rt△PBH,推出BC=BH即可解決問題.試題解析:(1)連接OP,∵AC是⊙O的切線,∴OP⊥AC,∴∠APO=∠ACB=90°,∴OP∥BC,∴∠OPB=∠PBC,∵OP=OB,∴∠OPB=∠OBP,∴∠PBC=∠OBP,∴BP平分∠ABC;(2)作PH⊥AB于H.則∠AHP=∠BHP=∠ACB=90°,又∵∠PBC=∠OBP,PB=PB,∴△PBC≌△PBH,∴PC=PH=1,BC=BH,在Rt△APH中,AH=,在Rt△ACB中,AC2+BC2=AB2∴(AP+PC)2+BC2=(AH+HB)2,即42+BC2=(+BC)2,解得.21、(1)(1,4)(2)(0,)或(0,-1)【解析】試題分析:(1)先求得點C的坐標,再由OA=OC得到點A的坐標,再根據(jù)拋物線的對稱性得到點B的坐標,利用待定系數(shù)法求得解析式后再進行配方即可得到頂點坐標;(2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可;(3)分情況進行討論即可得.試題解析:(1)當x=0時,拋物線y=ax2+bx+3=3,所以點C坐標為(0,3),∴OC=3,∵OA=OC,∴OA=3,∴A(3,0),∵A、B關于x=1對稱,∴B(-1,0),∵A、B在拋物線y=ax2+bx+3上,∴,∴,∴拋物線解析式為:y=-x2+2x+3=-(x-1)2+4,∴頂點P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),∴OC=3,OM=1,∵OC//PM,∴∠PMC=∠MCO,∴tan∠PMC=tan∠MCO==;(3)Q在C點的下方,∠BCQ=∠CMP,CM=,PM=4,BC=,∴或,∴CQ=或4,∴Q1(0,),Q2(0,-1).22、(1),;(2);(3).【解析】試題分析:(1)利用航模小組先求出數(shù)據(jù)總數(shù),再求出n.(2)小組所占圓心角=;(3)列表格求概率.試題解析:(1);(2);(3)將選航模項目的名男生編上號碼,將名女生編上號碼.用表格列出所有可能出現(xiàn)的結果:由表格可知,共有種可能出現(xiàn)的結果,并且它們都是第可能的,其中“名男生、名女生”有種可能.(名男生、名女生).(如用樹狀圖,酌情相應給分)考點:統(tǒng)計與概率的綜合運用.23、(1)證明見解析;(2)當t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】
(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數(shù)的性質(zhì)求出面積最大值,并求出此時Q的坐標即可;(3)當△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當0<t<6時,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當t=3時,△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點為BC的中點,線段EQ為△ABC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 線段樹支持動態(tài)網(wǎng)絡-洞察分析
- 天然氣井多相流安全風險評估-洞察分析
- 云計算在遠程教育中的應用分析-洞察分析
- 碎屑巖沉積特征-洞察分析
- 穩(wěn)定性試驗結果分析-洞察分析
- 勤儉節(jié)約,節(jié)約糧食三分鐘演講稿(11篇)
- 冬季烤火安全國旗下講話稿范文(6篇)
- 健康教育校本課程的實施效果與學生心理健康狀況改善的研究報告
- 企業(yè)家眼中的客戶關系維護與貸款風險管理
- 辦公環(huán)境中的創(chuàng)新教育理念與方法
- 人民醫(yī)院能源托管服務項目可研技術方案書
- 四川省自貢市2022-2023學年八年級上學期期末語文試題
- 車輛采購服務投標方案(完整技術標)
- 【直播帶貨對電商發(fā)展的影響及對策10000字(論文)】
- 鋼結構竣工驗收報告(范文)
- 數(shù)學文化欣賞
- 脊柱區(qū)1教學講解課件
- KK5-冷切鋸操作手冊-20151124
- 國際金融課后習題答案(吳志明第五版)第1-9章
- 《基于杜邦分析法周大福珠寶企業(yè)盈利能力分析報告(6400字)》
- 全國英語等級考試三級全真模擬試題二-2023修改整理
評論
0/150
提交評論