版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第一章三角形的初步認(rèn)識1.5全等三角形的判定第3課時(shí)“角邊角”學(xué)習(xí)目標(biāo)探索并理解“角邊角”判定方法;會(huì)用“角邊角”判定方法證明三角形全等;能用“角邊角”的判定方法解決實(shí)際問題.在括號內(nèi)填寫適當(dāng)?shù)睦碛?1.已知:AB=DC,AC=DB,求證:∠A=∠D.解:在△ABC和△DCB中,
AB=DC
()
AC=DB
()
BC=CB
(
)
∴△ABC≌△DCB
()
∴∠A=∠D()溫故知新ABCD已知已知公共邊SSS全等三角形的對應(yīng)角相等在括號內(nèi)填寫適當(dāng)?shù)睦碛?2.已知:如圖,AB=AC,AD=AE.
求證:BE=CD.解:在△ABE和△ACD中,
AB=AC
()
∠A=∠A(
) AE=AD(
)
∴△ABE≌△ACD
()
∴BE=CD()溫故知新已知公共角已知SAS全等三角形的對應(yīng)邊相等BEACD溫故知新SSS不能1.三個(gè)角.2.三條邊.3.兩邊一角.4.兩角一邊.除了SSS,SAS外,還有其他判定三角形全等的方法嗎?當(dāng)兩個(gè)三角形滿足六個(gè)條件中的三個(gè)時(shí),有四種情況:?SAS探究學(xué)習(xí)兩角一邊1.一種是邊夾在兩個(gè)角的中間,形成兩角夾一邊,即ASA.思考:這兩個(gè)角與一條邊在位置上有幾種可能性呢?角—邊—角探究學(xué)習(xí)兩角一邊2.另一種是邊不夾在兩角的中間,形成兩角一對邊,即AAS.思考:這兩個(gè)角與一條邊在位置上有幾種可能性呢?角—角—邊探究一:角邊角:若三角形的兩個(gè)內(nèi)角分別是60°和80°,它們所夾的邊為2cm,你能畫出這個(gè)三角形嗎?2cm60°80°探究一:角邊角:若三角形的兩個(gè)內(nèi)角分別是60°和80°,它們所夾的邊為2cm,你能畫出這個(gè)三角形嗎?你畫的三角形與其他同學(xué)畫的一定全等嗎?80°2cm60°60°兩角及其夾邊對應(yīng)相等的兩個(gè)三角形全等.簡寫成“角邊角”或“ASA”.角邊角(ASA)ABCA′B′C′幾何語言:在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(ASA).∠A=∠A′AC=A′C′,∠C=∠C′
典例講解例1已知:點(diǎn)D在AB上,點(diǎn)E在AC上,BE和CD相交于點(diǎn)O,AB=AC,∠B=∠C.求證:AD=AE.證明:在△ADC和△AEB中 ∠A=∠A(公共角) AC=AB(已知),
∠C=∠B(已知) ∴△ACD≌△ABE(ASA),
∴AD=AE(全等三角形的對應(yīng)邊相等).DBEAOC例2如圖,AB=AC,∠ABE=∠ACD,∠BAC=∠DAE.求證:△ABE≌△ACD.證明:∵∠BAC=∠DAE, ∴∠BAC-∠CAE=∠DAE-∠CAE,∠BAE=∠CAD,AB=AC(已知),∠ABE=∠ACD(已知), ∴∠BAE=∠CAD.
在△ABE和△ACD中,
∴△ABE≌△ACD(ASA).例3一塊三角形玻璃碎成三片(如圖),只需帶上其中一塊去玻璃店,玻璃店的師傅就能重新配一塊與原來相同的三角形玻璃.你知道應(yīng)帶哪一塊碎玻璃嗎?請說明理由.答:由“ASA”公理可知,只帶“1”號玻璃去玻璃店,就可以買到一塊完全一樣的玻璃.1.如圖,已知∠1=∠2,∠ABC=∠ABD.那么AC=AD嗎?為什么?解:在△ABC和△ABD中
∠1=∠2(已知),
AB=AB
(公共邊),
∠ABC=∠ABD(已知),∴△ABC≌△ABD(ASA).∴AC=AD(全等三角形對應(yīng)邊相等).隨堂練習(xí)證明:
∵AB∥CD,AF∥DE,
∴∠B=∠C,∠AFB=∠DEC(兩直線平行內(nèi)錯(cuò)角相等).
∵BE=CF,
∴BE+EF=CF+EF,即BF=CE.
在△ABF和△DCE中,
∴△ABF≌△DCE(ASA).2.如圖,AB∥CD,AF∥DE,BE=CF.證明:△ABF≌△DCE.∠B=∠CBF=CE,∠AFB=∠DEC2.若△ABC中,∠A=30°,∠B=70°,AB=5cm,△DEF中,∠E=70°,∠F=80°,DE=5cm,試說明AC與DF相等.30°70°5cmABC80°70°5cmDEF30°70°5cmABC80°70°5cmDEF證明:∵∠D=180°-∠E-∠F=180°-70°-80°=30°∴∠A=∠D在△ABC和△DEF中,∠A=∠D,AB=DE(已知),∠B=∠E(已知),∴△ABC≌△DEF(ASA)∴AC=DF(全等三角形的對應(yīng)邊相等).課堂小結(jié)三角形全等的判定方法1三邊對應(yīng)相等的兩個(gè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45065-2024皮革和毛皮化學(xué)試驗(yàn)揮發(fā)性甲基環(huán)硅氧烷殘留量的測定
- 二零二五年度房地產(chǎn)投資居間服務(wù)盡職調(diào)查合同3篇
- 二零二五年度二手車過戶業(yè)務(wù)資金監(jiān)管及擔(dān)保服務(wù)合同
- 二零二五年度出租車車輛租賃與乘客服務(wù)滿意度調(diào)查合同3篇
- 二零二五年度SEO關(guān)鍵詞研究及分析服務(wù)合同2篇
- 二零二五年度海上貨物共同海損處理合同3篇
- 二零二五年度新媒體短視頻節(jié)目制作服務(wù)協(xié)議2篇
- 豌豆的種植課程設(shè)計(jì)
- 2025年度數(shù)據(jù)中心冷卻系統(tǒng)安裝工程合同9篇
- 二零二五年度房屋買賣合同范本:維修基金結(jié)算3篇
- (正式版)HG∕T 21633-2024 玻璃鋼管和管件選用規(guī)定
- 07FD02防空地下室電氣設(shè)備安裝圖集
- 基礎(chǔ)會(huì)計(jì)(第7版)ppt課件完整版
- Q∕SY 1206.1-2009 油氣管道通信系統(tǒng)通用技術(shù)規(guī)范 第1部分:光傳輸系統(tǒng)
- 汽車4S店八大運(yùn)營業(yè)績指標(biāo)管控培訓(xùn)_89頁
- 設(shè)備安裝、調(diào)試及驗(yàn)收質(zhì)量保證措施
- 火力發(fā)電廠生產(chǎn)技術(shù)管理導(dǎo)則
- 汽輪機(jī)葉片振動(dòng)與分析
- 地質(zhì)工作個(gè)人述職報(bào)告三篇
- 產(chǎn)品可追溯流程圖圖
- 形意拳九歌八法釋意
評論
0/150
提交評論