中考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)與壓軸題型專項(xiàng)突破訓(xùn)練專題06 填空題中之分類(lèi)討論思想(教師版)_第1頁(yè)
中考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)與壓軸題型專項(xiàng)突破訓(xùn)練專題06 填空題中之分類(lèi)討論思想(教師版)_第2頁(yè)
中考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)與壓軸題型專項(xiàng)突破訓(xùn)練專題06 填空題中之分類(lèi)討論思想(教師版)_第3頁(yè)
中考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)與壓軸題型專項(xiàng)突破訓(xùn)練專題06 填空題中之分類(lèi)討論思想(教師版)_第4頁(yè)
中考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)與壓軸題型專項(xiàng)突破訓(xùn)練專題06 填空題中之分類(lèi)討論思想(教師版)_第5頁(yè)
已閱讀5頁(yè),還剩35頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題06填空題中之分類(lèi)討論思想【中考考向?qū)Ш健磕夸汿OC\o"1-3"\h\u【直擊中考】 1【考向一與等腰三角形有關(guān)的分類(lèi)討論問(wèn)題】 1【考向二與直角三角形有關(guān)的分類(lèi)討論問(wèn)題】 7【考向三與矩形有關(guān)的分類(lèi)討論問(wèn)題】 10【考向四與菱形有關(guān)的分類(lèi)討論問(wèn)題】 18【考向五與正方形有關(guān)的分類(lèi)討論問(wèn)題】 23【考向六與圓的分類(lèi)討論問(wèn)題】 28【考向七與相似有關(guān)的分類(lèi)討論問(wèn)題】 33【直擊中考】【考向一與等腰三角形有關(guān)的分類(lèi)討論問(wèn)題】例題:(2022·四川廣安·統(tǒng)考中考真題)若(a﹣3)2+SKIPIF1<0=0,則以a、b為邊長(zhǎng)的等腰三角形的周長(zhǎng)為_(kāi)_______.【答案】11或13##13或11【分析】根據(jù)平方的非負(fù)性,算術(shù)平方根的非負(fù)性求得SKIPIF1<0的值,進(jìn)而根據(jù)等腰三角形的定義,分類(lèi)討論,根據(jù)構(gòu)成三角形的條件取舍即可求解.【詳解】解:∵(a﹣3)2+SKIPIF1<0=0,∴SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0為腰時(shí),周長(zhǎng)為:SKIPIF1<0,當(dāng)SKIPIF1<0為腰時(shí),三角形的周長(zhǎng)為SKIPIF1<0,故答案為:11或13.【點(diǎn)睛】本題考查了等腰三角形的定義,非負(fù)數(shù)的性質(zhì),掌握以上知識(shí)是解題的關(guān)鍵.【變式訓(xùn)練】1.(2022·遼寧朝陽(yáng)·統(tǒng)考中考真題)等邊三角形ABC中,D是邊BC上的一點(diǎn),BD=2CD,以AD為邊作等邊三角形ADE,連接CE.若CE=2,則等邊三角形ABC的邊長(zhǎng)為_(kāi)____.【答案】3或SKIPIF1<0.【分析】分兩種情況,先證明SKIPIF1<0,再根據(jù)全等三角形的性質(zhì)即可得出答案.【詳解】解:如圖,SKIPIF1<0點(diǎn)在SKIPIF1<0的右邊,SKIPIF1<0與SKIPIF1<0都是等邊三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0等邊三角形SKIPIF1<0的邊長(zhǎng)為3,如圖,SKIPIF1<0點(diǎn)在SKIPIF1<0的左邊,同上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0的延長(zhǎng)線于點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0或SKIPIF1<0(舍去),SKIPIF1<0,SKIPIF1<0等邊三角形SKIPIF1<0的邊長(zhǎng)為SKIPIF1<0,故答案為:3或SKIPIF1<0.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),熟練掌握等邊三角形的性質(zhì),證明SKIPIF1<0是解題的關(guān)鍵.2.(2022·內(nèi)蒙古通遼·統(tǒng)考中考真題)在SKIPIF1<0中,SKIPIF1<0,有一個(gè)銳角為SKIPIF1<0,SKIPIF1<0,若點(diǎn)SKIPIF1<0在直線SKIPIF1<0上(不與點(diǎn)SKIPIF1<0,SKIPIF1<0重合),且SKIPIF1<0,則SKIPIF1<0的長(zhǎng)為_(kāi)______.【答案】SKIPIF1<0或9或3【分析】分∠ABC=60、∠ABC=30°兩種情況,利用數(shù)形結(jié)合的方法,分別求解即可.【詳解】解:當(dāng)∠ABC=60°時(shí),則∠BAC=30°,∴SKIPIF1<0,∴SKIPIF1<0,當(dāng)點(diǎn)P在線段AB上時(shí),如圖,∵SKIPIF1<0,∴∠BPC=90°,即PC⊥AB,∴SKIPIF1<0;當(dāng)點(diǎn)P在AB的延長(zhǎng)線上時(shí),∵SKIPIF1<0,∠PBC=∠PCB+∠CPB,∴∠CPB=30°,∴∠CPB=∠PCB,∴PB=BC=3,∴AP=AB+PB=9;當(dāng)∠ABC=30°時(shí),則∠BAC=60°,如圖,∴SKIPIF1<0,∵SKIPIF1<0,∴∠APC=60°,∴∠ACP=60°,∴∠APC=∠PAC=∠ACP,∴△APC為等邊三角形,∴PA=AC=3.綜上所述,SKIPIF1<0的長(zhǎng)為SKIPIF1<0或9或3.故答案為:SKIPIF1<0或9或3【點(diǎn)睛】本題是解直角三角形綜合題,主要考查了含30度角的直角三角形、解直角三角形,等邊三角形的判定和性質(zhì)等,分類(lèi)求解是本題解題的關(guān)鍵.3.(2022·浙江紹興·統(tǒng)考中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,以點(diǎn)SKIPIF1<0為圓心,SKIPIF1<0長(zhǎng)為半徑作弧,交射線SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0的度數(shù)是______.【答案】10°或100°【分析】分兩種情況畫(huà)圖,由作圖可知得SKIPIF1<0,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理解答即可.【詳解】解:如圖,點(diǎn)SKIPIF1<0即為所求;在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由作圖可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;由作圖可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.綜上所述:SKIPIF1<0的度數(shù)是SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了作圖SKIPIF1<0復(fù)雜作圖,三角形內(nèi)角和定理,等腰三角形的判定與性質(zhì),解題的關(guān)鍵是掌握基本作圖方法.4.(2022·青海西寧·統(tǒng)考中考真題)矩形ABCD中,SKIPIF1<0,SKIPIF1<0,點(diǎn)E在AB邊上,SKIPIF1<0.若點(diǎn)P是矩形ABCD邊上一點(diǎn),且與點(diǎn)A,E構(gòu)成以AE為腰的等腰三角形,則等腰三角形AEP的底邊長(zhǎng)是________.【答案】SKIPIF1<0或SKIPIF1<0【分析】分情況討論:①當(dāng)AP=AE=5,點(diǎn)P在邊AD上時(shí),由勾股定理可求得底邊PE的長(zhǎng);②當(dāng)PE=AE=5,點(diǎn)P在邊BC上時(shí),求出BE,由勾股定理求出PB,再由勾股定理求出底邊AP即可.【詳解】解:∵矩形ABCD∴∠A=∠B=90°,分兩種情況:當(dāng)AP=AE=5,點(diǎn)P在邊AD上時(shí),如圖所示:∵∠BAD=90°,∴PE=SKIPIF1<0=5SKIPIF1<0;當(dāng)PE=AE=5,點(diǎn)P在邊BC上時(shí),如圖所示:∵BE=AB-AE=8-5=3,∠B=90°,∴PB=SKIPIF1<0=4,∴底邊AP=SKIPIF1<0;綜上,等腰三角形AEP的底邊長(zhǎng)是SKIPIF1<0或SKIPIF1<0【點(diǎn)睛】本題考查了矩形的性質(zhì),勾股定理,熟練掌握矩形的性質(zhì)和等腰三角形的判定,進(jìn)行分類(lèi)討論是解決問(wèn)題的關(guān)鍵.5.(2022·江西·統(tǒng)考中考真題)已知點(diǎn)A在反比例函數(shù)SKIPIF1<0的圖象上,點(diǎn)B在x軸正半軸上,若SKIPIF1<0為等腰三角形,且腰長(zhǎng)為5,則SKIPIF1<0的長(zhǎng)為_(kāi)_________.【答案】5或SKIPIF1<0或SKIPIF1<0【分析】因?yàn)榈妊切蔚难淮_定,所以分三種情況分別計(jì)算即可.【詳解】解:①當(dāng)AO=AB時(shí),AB=5;②當(dāng)AB=BO時(shí),AB=5;③當(dāng)OA=OB時(shí),則OB=5,B(5,0),設(shè)A(a,SKIPIF1<0)(a>0),∵OA=5,∴SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,∴A(3,4)或(4,3),∴AB=SKIPIF1<0或AB=SKIPIF1<0;綜上所述,AB的長(zhǎng)為5或SKIPIF1<0或SKIPIF1<0.故答案為:5或SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,考查分類(lèi)討論的思想,當(dāng)時(shí),求出點(diǎn)的坐標(biāo)是解題的關(guān)鍵.【考向二與直角三角形有關(guān)的分類(lèi)討論問(wèn)題】例題:(2022·黑龍江哈爾濱·統(tǒng)考中考真題)在SKIPIF1<0中,SKIPIF1<0為邊SKIPIF1<0上的高,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0是___________度.【答案】40或80##80或40【分析】根據(jù)題意,由于SKIPIF1<0類(lèi)型不確定,需分三種情況:高在三角形內(nèi)部、高在三角形邊上和高在三角形外部討論求解.【詳解】解:根據(jù)題意,分三種情況討論:①高在三角形內(nèi)部,如圖所示:SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0為邊SKIPIF1<0上的高,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0;②高在三角形邊上,如圖所示:可知SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故此種情況不存在,舍棄;③高在三角形外部,如圖所示:SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0為邊SKIPIF1<0上的高,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0;綜上所述:SKIPIF1<0或SKIPIF1<0,故答案為:SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查求角度問(wèn)題,在沒(méi)有圖形的情況下,必須考慮清楚各種不同的情況,根據(jù)題意分情況討論是解決問(wèn)題的關(guān)鍵.【變式訓(xùn)練】1.(2022·遼寧撫順·統(tǒng)考中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0,點(diǎn)P為斜邊SKIPIF1<0上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A.B重合),過(guò)點(diǎn)P作SKIPIF1<0,垂足分別為點(diǎn)D和點(diǎn)E,連接SKIPIF1<0交于點(diǎn)Q,連接SKIPIF1<0,當(dāng)SKIPIF1<0為直角三角形時(shí),SKIPIF1<0的長(zhǎng)是_____________【答案】3或SKIPIF1<0【分析】根據(jù)題意,由SKIPIF1<0為直角三角形,可進(jìn)行分類(lèi)討論:①當(dāng)SKIPIF1<0;②當(dāng)SKIPIF1<0兩種情況進(jìn)行分析,然后進(jìn)行計(jì)算,即可得到答案.【詳解】解:根據(jù)題意,∵在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵當(dāng)SKIPIF1<0為直角三角形時(shí),可分情況進(jìn)行討論①當(dāng)SKIPIF1<0時(shí),如圖:則SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;在直角△ACP中,由勾股定理,則SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),如圖∵SKIPIF1<0,SKIPIF1<0,∴四邊形CDPE是矩形,∴CQ=PQ,∵AQ⊥CP,∴△ACP是等腰三角形,即AP=AC=SKIPIF1<0綜合上述,SKIPIF1<0的長(zhǎng)是3或SKIPIF1<0;故答案為:3或SKIPIF1<0;【點(diǎn)睛】本題考查了等腰三角形的判定和性質(zhì),矩形的判定和性質(zhì),勾股定理,30度直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握所學(xué)的知識(shí),運(yùn)用分類(lèi)討論的思想進(jìn)行解題.2.(2022·河南·統(tǒng)考中考真題)如圖,在Rt△ABC中,∠ACB=90°,SKIPIF1<0,點(diǎn)D為AB的中點(diǎn),點(diǎn)P在AC上,且CP=1,將CP繞點(diǎn)C在平面內(nèi)旋轉(zhuǎn),點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)Q,連接AQ,DQ.當(dāng)∠ADQ=90°時(shí),AQ的長(zhǎng)為_(kāi)_____.【答案】SKIPIF1<0或SKIPIF1<0##SKIPIF1<0或SKIPIF1<0【分析】連接SKIPIF1<0,根據(jù)題意可得,當(dāng)∠ADQ=90°時(shí),分SKIPIF1<0點(diǎn)在線段SKIPIF1<0上和SKIPIF1<0的延長(zhǎng)線上,且SKIPIF1<0,勾股定理求得SKIPIF1<0即可.【詳解】如圖,連接SKIPIF1<0,SKIPIF1<0在Rt△ABC中,∠ACB=90°,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)題意可得,當(dāng)∠ADQ=90°時(shí),SKIPIF1<0點(diǎn)在SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0,如圖,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點(diǎn)SKIPIF1<0的位置是解題的關(guān)鍵.【考向三與矩形有關(guān)的分類(lèi)討論問(wèn)題】例題:(2022·遼寧錦州·中考真題)如圖,四邊形SKIPIF1<0為矩形,SKIPIF1<0,點(diǎn)E為邊SKIPIF1<0上一點(diǎn),將SKIPIF1<0沿SKIPIF1<0翻折,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)F,過(guò)點(diǎn)F作SKIPIF1<0的平行線交SKIPIF1<0于點(diǎn)G,交直線SKIPIF1<0于點(diǎn)H.若點(diǎn)G是邊SKIPIF1<0的三等分點(diǎn),則SKIPIF1<0的長(zhǎng)是____________.【答案】SKIPIF1<0或SKIPIF1<0【分析】過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,根據(jù)題意可得四邊形SKIPIF1<0是平行四邊形,證明SKIPIF1<0,等面積法求得SKIPIF1<0,勾股定理求得SKIPIF1<0,可得SKIPIF1<0的長(zhǎng),進(jìn)而即可求解.【詳解】①如圖,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0是平行四邊形SKIPIF1<0SKIPIF1<0折疊SKIPIF1<0SKIPIF1<0SKIPIF1<0即SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0是矩形SKIPIF1<0SKIPIF1<0中,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0中,SKIPIF1<0SKIPIF1<0②如圖,當(dāng)SKIPIF1<0時(shí),同理可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0中,SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<0或SKIPIF1<0【點(diǎn)睛】本題考查了勾股定理,折疊,矩形的性質(zhì),平行四邊形的性質(zhì)與判定,掌握以上知識(shí),注意分類(lèi)討論是解題的關(guān)鍵.【變式訓(xùn)練】1.(2022·遼寧盤(pán)錦·中考真題)如圖,四邊形ABCD為矩形,AB=3,AD=4,AC,BD為矩形的對(duì)角線,E是AD邊的中點(diǎn),點(diǎn)F是CD上一點(diǎn),連接EF,將△DEF沿EF折疊,當(dāng)點(diǎn)G落在矩形對(duì)角線上時(shí),則折痕EF的長(zhǎng)是_____.【答案】SKIPIF1<0或SKIPIF1<0【分析】分兩種情況,分別畫(huà)出圖形:當(dāng)G在AC上時(shí),連接DG交EF于M,證明∠AGD=90°,從而EF∥AC,得EF是△ADC的中位線,可得EF=SKIPIF1<0;當(dāng)G在BD上,設(shè)BD交EF于N,證明△ABD∽△DEF,可得SKIPIF1<0=SKIPIF1<0,EF=SKIPIF1<0.【詳解】解:當(dāng)G在AC上時(shí),連接DG交EF于M,如圖甲所示:∵E是AD中點(diǎn),∴AE=DE,∵將△DEF沿EF折疊,∴DE=GE,∠DME=∠GME=90°,∴AE=DE=GE,∴∠EAG=∠EGA,∠EDG=∠EGD,∵∠EAG+∠EGA+∠EDG+∠EGD=180°,∴2∠EGA+2∠EGD=180°,∴∠EGA+∠EGD=90°,即∠AGD=90°,∴∠AGD=∠DME,∴EF∥AC,∵E是AD中點(diǎn),∴EF是△ADC的中位線,∴EF=SKIPIF1<0AC,∵AC=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=5,∴EF=SKIPIF1<0;當(dāng)G在BD上,設(shè)BD交EF于N,如圖乙所示:∵將△DEF沿EF折疊,∴∠DNF=90°,∴∠DFN=90°﹣∠FDN=∠ADB,∵∠EDF=90°=∠BAD,∴△ABD∽△DEF,∴SKIPIF1<0=SKIPIF1<0,∵BD=AC=5,DE=SKIPIF1<0AD=2,∴SKIPIF1<0=SKIPIF1<0,∴EF=SKIPIF1<0,綜上所述,折痕EF的長(zhǎng)是SKIPIF1<0或SKIPIF1<0,故答案為:SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查矩形中的翻折問(wèn)題,涉及相似三角形的判定與性質(zhì),三角形的中位線等知識(shí),解題的關(guān)鍵是掌握翻折的性質(zhì).2.(2022·黑龍江綏化·統(tǒng)考中考真題)在長(zhǎng)為2,寬為x(SKIPIF1<0)的矩形紙片上,從它的一側(cè),剪去一個(gè)以矩形紙片寬為邊長(zhǎng)的正方形(第一次操作);從剩下的矩形紙片一側(cè)再剪去一個(gè)以寬為邊長(zhǎng)的正方形(第二次操作);按此方式,如果第三次操作后,剩下的紙片恰為正方形,則x的值為_(kāi)_______.【答案】SKIPIF1<0或SKIPIF1<0【分析】分析題意,根據(jù)x的取值范圍不同,對(duì)剩下矩形的長(zhǎng)寬進(jìn)行討論,求出滿足題意的x值即可.【詳解】解:第一次操作后剩下的矩形兩邊長(zhǎng)為SKIPIF1<0和SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則第一次操作后,剩下矩形的寬為SKIPIF1<0,所以可得第二次操作后,剩下矩形一邊為SKIPIF1<0,另一邊為:SKIPIF1<0,∵第三次操作后,剩下的紙片恰為正方形,∴第二次操作后剩下矩形的長(zhǎng)是寬的2倍,分以下兩種情況進(jìn)行討論:①當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),第三次操作后剩下的矩形的寬為SKIPIF1<0,長(zhǎng)是SKIPIF1<0,則由題意可知:SKIPIF1<0,解得:SKIPIF1<0;②當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),第三次操作后剩下的矩形的寬為SKIPIF1<0,長(zhǎng)是SKIPIF1<0,由題意得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0或者SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了矩形的性質(zhì),正方形的性質(zhì)以及分類(lèi)討論的數(shù)學(xué)思想方法,熟練掌握矩形,正方形性質(zhì)以及分類(lèi)討論的方法是解題的關(guān)鍵.3.(2022·遼寧沈陽(yáng)·統(tǒng)考中考真題)如圖,將矩形紙片ABCD折疊,折痕為MN,點(diǎn)M,N分別在邊AD,BC上,點(diǎn)C,D的對(duì)應(yīng)點(diǎn)分別在E,F(xiàn)且點(diǎn)F在矩形內(nèi)部,MF的延長(zhǎng)線交BC與點(diǎn)G,EF交邊BC于點(diǎn)H.SKIPIF1<0,SKIPIF1<0,當(dāng)點(diǎn)H為GN三等分點(diǎn)時(shí),MD的長(zhǎng)為_(kāi)_____.【答案】SKIPIF1<0或4【分析】由折疊得,∠DMN=∠GMN,EF=CD==4,CN=EN=2,∠EFM=∠D=90°,證明SKIPIF1<0得SKIPIF1<0,再分兩種情況討論求解即可.【詳解】解:∵四邊形ABCD是矩形,∴AD//BC,CD=AB=4,∠D=∠C=90°,∴∠DMN=∠GNM,由折疊得,∠DMN=∠GMN,EF=CD==4,CN=EN=2,∠EFM=∠D=90°,∴∠GMN=∠GNM,∠GFH=∠NEH,∴GM=GN,又∠GHE=∠NHE,∴SKIPIF1<0,∴SKIPIF1<0,∵點(diǎn)H是GN的三等分點(diǎn),則有兩種情況:①若SKIPIF1<0時(shí),則有:SKIPIF1<0∴EH=SKIPIF1<0,GF=2NE=4,由勾股定理得,SKIPIF1<0,∴GH=2NH=SKIPIF1<0∴GM=GN=GH+NH=SKIPIF1<0,∴MD=MF=GM-GF=SKIPIF1<0;②若SKIPIF1<0時(shí),則有:SKIPIF1<0∴EH=SKIPIF1<0,GF=SKIPIF1<0NE=1,由勾股定理得,SKIPIF1<0,∴GH=SKIPIF1<0NH=SKIPIF1<0∴GM=GN=GH+NH=5;∴MD=MF=GM-GF=SKIPIF1<0綜上,MD的值為SKIPIF1<0或4.【點(diǎn)睛】本題主要考查了矩形的性質(zhì),折疊的性質(zhì),等腰三角形的判定與性質(zhì)以及相似三角形的判定與性質(zhì)等知識(shí),進(jìn)行分類(lèi)討論是解答本題的關(guān)鍵.4.(2022·黑龍江·統(tǒng)考中考真題)在矩形ABCD中,SKIPIF1<0,SKIPIF1<0,點(diǎn)E在邊CD上,且SKIPIF1<0,點(diǎn)P是直線BC上的一個(gè)動(dòng)點(diǎn).若SKIPIF1<0是直角三角形,則BP的長(zhǎng)為_(kāi)_______.【答案】SKIPIF1<0或SKIPIF1<0或6【分析】分三種情況討論:當(dāng)∠APE=90°時(shí),當(dāng)∠AEP=90°時(shí),當(dāng)∠PAE=90°時(shí),過(guò)點(diǎn)P作PF⊥DA交DA延長(zhǎng)線于點(diǎn)F,即可求解.【詳解】解:在矩形ABCD中,SKIPIF1<0,SKIPIF1<0,∠BAD=∠B=∠BCD=∠ADC=90°,如圖,當(dāng)∠APE=90°時(shí),∴∠APB+∠CPE=90°,∵∠BAP+∠APB=90°,∴∠BAP=∠CPE,∵∠B=∠C=90°,∴△ABP∽△PCE,∴SKIPIF1<0,即SKIPIF1<0,解得:BP=6;如圖,當(dāng)∠AEP=90°時(shí),∴∠AED+∠PEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠PEC,∵∠C=∠D=90°,∴△ADE∽△ECP,∴SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0;如圖,當(dāng)∠PAE=90°時(shí),過(guò)點(diǎn)P作PF⊥DA交DA延長(zhǎng)線于點(diǎn)F,根據(jù)題意得∠BAF=∠ABP=∠F=90°,∴四邊形ABPF為矩形,∴PF=AB=9,AF=PB,∵∠PAF+∠DAE=90°,∠PAF+∠APF=90°,∴∠DAE=∠APF,∵∠F=∠D=90°,∴△APF∽△EAD,∴SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0;綜上所述,BP的長(zhǎng)為SKIPIF1<0或SKIPIF1<0或6.故答案為:SKIPIF1<0或SKIPIF1<0或6【點(diǎn)睛】本題主要考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),熟練掌握相似三角形的判定和性質(zhì),矩形的性質(zhì),并利用分類(lèi)討論思想解答是解題的關(guān)鍵.【考向四與菱形有關(guān)的分類(lèi)討論問(wèn)題】例題:(2022秋·廣東梅州·九年級(jí)校考階段練習(xí))如圖,已知在菱形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0折疊,使點(diǎn)SKIPIF1<0落在點(diǎn)SKIPIF1<0處,當(dāng)SKIPIF1<0是直角三角形時(shí),SKIPIF1<0的長(zhǎng)為_(kāi)___.【答案】SKIPIF1<0或SKIPIF1<0【分析】分兩種情形①當(dāng)SKIPIF1<0與O重合時(shí),SKIPIF1<0是直角三角形,此時(shí)SKIPIF1<0.②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是直角三角形,此時(shí)SKIPIF1<0,列出方程即可解決問(wèn)題.【詳解】解:如圖,連接SKIPIF1<0交SKIPIF1<0于O.∵四邊形SKIPIF1<0是菱形,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0是由SKIPIF1<0翻折得到,∴SKIPIF1<0,①當(dāng)SKIPIF1<0與O重合時(shí),SKIPIF1<0是直角三角形,此時(shí)SKIPIF1<0.②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是直角三角形,此時(shí)SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,綜上所述,滿足條件的SKIPIF1<0的長(zhǎng)為SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查翻折變換、菱形的性質(zhì)、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類(lèi)討論的思想思考問(wèn)題,是由中考填空題中的壓軸題.【變式訓(xùn)練】1.(2022秋·浙江金華·九年級(jí)義烏市繡湖中學(xué)教育集團(tuán)校聯(lián)考期中)已知,拋物線SKIPIF1<0上有兩點(diǎn)SKIPIF1<0,SKIPIF1<0,將拋物線沿水平方向平移,平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為SKIPIF1<0,點(diǎn)B的對(duì)應(yīng)點(diǎn)為SKIPIF1<0,且四邊形SKIPIF1<0剛好為菱形,那么平移后的拋物線的頂點(diǎn)坐標(biāo)為_(kāi)____.【答案】SKIPIF1<0或SKIPIF1<0【分析】利用待定系數(shù)法求得函數(shù)的解析式得到頂點(diǎn)坐標(biāo),由四邊形SKIPIF1<0為菱形,得出SKIPIF1<0,即可得出向右平移5各單位的得到新拋物線,進(jìn)而即可求得平移后的拋物線的頂點(diǎn)坐標(biāo).【詳解】解:根據(jù)題意得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,∵四邊形SKIPIF1<0為菱形,SKIPIF1<0,SKIPIF1<0,∴頂點(diǎn)為SKIPIF1<0,∴當(dāng)拋物線向右平移5個(gè)單位的拋物線的頂點(diǎn)為SKIPIF1<0.當(dāng)拋物線向左平移5個(gè)單位是拋物線頂點(diǎn)為SKIPIF1<0故答案為:SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了二次函數(shù)的圖象與幾何變換,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,菱形的性質(zhì),求得拋物線的解析式是解題的關(guān)鍵.2.(2022·河南信陽(yáng)·??家荒#┤鐖D,在菱形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為線段SKIPIF1<0上一動(dòng)點(diǎn),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,沿SKIPIF1<0將SKIPIF1<0折疊,點(diǎn)SKIPIF1<0的對(duì)稱點(diǎn)為點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,當(dāng)SKIPIF1<0為等腰三角形時(shí),SKIPIF1<0的長(zhǎng)為_(kāi)_____.【答案】SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【分析】分類(lèi)討論:如圖SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),如圖SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),如圖SKIPIF1<0中,當(dāng)SKIPIF1<0時(shí),分別求出即可.【詳解】解:如圖SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0與SKIPIF1<0重合或在點(diǎn)SKIPIF1<0處.當(dāng)SKIPIF1<0與SKIPIF1<0重合時(shí),SKIPIF1<0與SKIPIF1<0也重合,此時(shí)SKIPIF1<0;SKIPIF1<0在菱形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0

,SKIPIF1<0,SKIPIF1<0;如圖SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0與SKIPIF1<0重合或在SKIPIF1<0處,點(diǎn)SKIPIF1<0與SKIPIF1<0重合,SKIPIF1<0是SKIPIF1<0的垂直平分線,SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0處時(shí),過(guò)SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,則可得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0;如圖SKIPIF1<0中,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0.綜上所述:當(dāng)SKIPIF1<0為等腰三角形時(shí),SKIPIF1<0的長(zhǎng)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.故答案為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了菱形的性質(zhì),等腰直角三角形的性質(zhì),折疊的性質(zhì),分類(lèi)討論是解題關(guān)鍵.3.(2022秋·廣東梅州·九年級(jí)校考階段練習(xí))在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0在直線SKIPIF1<0上,且四邊形SKIPIF1<0為菱形,若線段SKIPIF1<0的中點(diǎn)為點(diǎn)SKIPIF1<0,則線段SKIPIF1<0的長(zhǎng)為_(kāi)___.【答案】SKIPIF1<0或SKIPIF1<0【分析】?jī)煞N情況:①由矩形的性質(zhì)得出SKIPIF1<0,由菱形的性質(zhì)得出SKIPIF1<0,由勾股定理求出SKIPIF1<0,得出SKIPIF1<0,即可求出SKIPIF1<0;②同①得出SKIPIF1<0,求出SKIPIF1<0,即可得出SKIPIF1<0的長(zhǎng).【詳解】解:分兩種情況:①如圖1所示:∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,∵四邊形SKIPIF1<0為菱形,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∵M(jìn)是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0;②如圖2所示:同①得:SKIPIF1<0,∵M(jìn)是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0;綜上所述:線段SKIPIF1<0的長(zhǎng)為:SKIPIF1<0或SKIPIF1<0;故答案為:SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了矩形的性質(zhì)、菱形的性質(zhì)、勾股定理;熟練掌握矩形和菱形的性質(zhì),并能進(jìn)行推理計(jì)算是解決問(wèn)題的關(guān)鍵.【考向五與正方形有關(guān)的分類(lèi)討論問(wèn)題】例題:(2022秋·浙江紹興·九年級(jí)統(tǒng)考期中)正方形SKIPIF1<0中,E,F(xiàn)分別是SKIPIF1<0,SKIPIF1<0上的點(diǎn),連結(jié)SKIPIF1<0交對(duì)角線SKIPIF1<0于點(diǎn)G,若SKIPIF1<0恰好平分SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為_(kāi)_____.【答案】SKIPIF1<0或4【分析】延長(zhǎng)SKIPIF1<0交SKIPIF1<0于R,作SKIPIF1<0于T,不妨設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可證得SKIPIF1<0是等腰三角形,可推出SKIPIF1<0,進(jìn)而表示出SKIPIF1<0,然后解SKIPIF1<0,從而求出x的值,進(jìn)而可得結(jié)果.【詳解】解:如圖,延長(zhǎng)SKIPIF1<0交SKIPIF1<0于R,作SKIPIF1<0于T,SKIPIF1<0SKIPIF1<0,SKIPIF1<0不妨設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是正方形,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0恰好平分SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,由勾股定理得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0,綜上所述,SKIPIF1<0或4,故答案為:SKIPIF1<0或4.【點(diǎn)睛】本題考查了正方形的性質(zhì),等腰三角形的判定,平行線分線段成比例,勾股定理等知識(shí)點(diǎn),解題的關(guān)鍵是作輔助線,構(gòu)造出等腰三角形.【變式訓(xùn)練】1.(2022秋·山東日照·九年級(jí)校考期末)等腰SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,正方形SKIPIF1<0的兩個(gè)頂點(diǎn)在SKIPIF1<0的一邊上,另兩個(gè)頂點(diǎn)在SKIPIF1<0的另兩邊上,則正方形SKIPIF1<0的邊長(zhǎng)為_(kāi)___________.【答案】SKIPIF1<0或SKIPIF1<0【分析】分兩種情況討論:①正方形的邊SKIPIF1<0在SKIPIF1<0上,根據(jù)正方形的性質(zhì),證明SKIPIF1<0,得到SKIPIF1<0,再利用等腰三角形的性質(zhì),得到SKIPIF1<0,由勾股定理得到SKIPIF1<0,即可求出正方形邊長(zhǎng);②正方形的邊SKIPIF1<0在SKIPIF1<0上,作SKIPIF1<0,利用三角形的面積,求出SKIPIF1<0,再證明SKIPIF1<0,利用相似比SKIPIF1<0,即可求出正方形邊長(zhǎng).【詳解】解:①如圖1,正方形的邊SKIPIF1<0在SKIPIF1<0上,P、N分別在SKIPIF1<0、SKIPIF1<0上,過(guò)D作SKIPIF1<0交SKIPIF1<0于點(diǎn)E,設(shè)正方形邊長(zhǎng)為SKIPIF1<0,SKIPIF1<0正方形SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0;②如圖2,正方形的邊SKIPIF1<0在SKIPIF1<0上,P、N分別在SKIPIF1<0、SKIPIF1<0上,過(guò)D作SKIPIF1<0于點(diǎn)D,作SKIPIF1<0于點(diǎn)G,設(shè)正方形邊長(zhǎng)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,綜上所述,正方形的邊長(zhǎng)為SKIPIF1<0或SKIPIF1<0,故答案為:SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了正方形的性質(zhì),相似三角形的額判定和性質(zhì),勾股定理,等腰三角形的性質(zhì)等知識(shí),熟練掌握相似三角形的判定和性質(zhì)是解題關(guān)鍵.2.(2022秋·江西宜春·九年級(jí)校考期中)在平面直角坐標(biāo)系中,正方形SKIPIF1<0的SKIPIF1<0在SKIPIF1<0軸正半軸上,邊SKIPIF1<0在第一象限,且SKIPIF1<0,SKIPIF1<0.將正方形SKIPIF1<0繞點(diǎn)SKIPIF1<0順時(shí)針旋轉(zhuǎn)SKIPIF1<0,若點(diǎn)SKIPIF1<0對(duì)應(yīng)點(diǎn)SKIPIF1<0恰好落在坐標(biāo)軸上,則點(diǎn)SKIPIF1<0的對(duì)應(yīng)點(diǎn)SKIPIF1<0的坐標(biāo)為_(kāi)__________.【答案】SKIPIF1<0或SKIPIF1<0【分析】由正方形SKIPIF1<0的SKIPIF1<0在SKIPIF1<0軸正半軸上,邊SKIPIF1<0在第一象限,且SKIPIF1<0,SKIPIF1<0,先求出SKIPIF1<0長(zhǎng),進(jìn)而得出SKIPIF1<0,畫(huà)出圖形:當(dāng)正方形SKIPIF1<0繞點(diǎn)A順時(shí)針旋轉(zhuǎn)SKIPIF1<0,分兩種情況,①點(diǎn)B的對(duì)應(yīng)點(diǎn)SKIPIF1<0恰好落在x軸正半軸上時(shí),②點(diǎn)B的對(duì)應(yīng)點(diǎn)SKIPIF1<0恰好落在y軸負(fù)半軸上時(shí).【詳解】解:∵正方形SKIPIF1<0的SKIPIF1<0在SKIPIF1<0軸正半軸上,邊SKIPIF1<0在第一象限,且SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,畫(huà)圖如下:當(dāng)正方形SKIPIF1<0繞點(diǎn)A順時(shí)針旋轉(zhuǎn)SKIPIF1<0,作SKIPIF1<0軸于E,分兩種情況①點(diǎn)B的對(duì)應(yīng)點(diǎn)SKIPIF1<0恰好落在x軸正半軸上時(shí),如圖,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,在△AB′O和△EB′C′中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴點(diǎn)C的對(duì)應(yīng)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0;②點(diǎn)B的對(duì)應(yīng)點(diǎn)SKIPIF1<0恰好落在y軸負(fù)半軸上時(shí),如圖,則SKIPIF1<0,∴SKIPIF1<0,∴點(diǎn)C的對(duì)應(yīng)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0;綜上所述:點(diǎn)C的對(duì)應(yīng)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查正方形的性質(zhì),勾股定理,圖形的旋轉(zhuǎn)變換,三角形全等,掌握正方形的性質(zhì),勾股定理,圖形的旋轉(zhuǎn)變換,三角形全等,利用分兩種情況考慮點(diǎn)SKIPIF1<0的位置求點(diǎn)SKIPIF1<0坐標(biāo)是解題關(guān)鍵.3.(2021秋·北京東城·九年級(jí)校考期末)如圖,正方形SKIPIF1<0的面積為3,點(diǎn)SKIPIF1<0是SKIPIF1<0邊上一點(diǎn),SKIPIF1<0,將線段SKIPIF1<0繞點(diǎn)SKIPIF1<0旋轉(zhuǎn),使點(diǎn)SKIPIF1<0落在直線SKIPIF1<0上,落點(diǎn)記為SKIPIF1<0,則SKIPIF1<0的長(zhǎng)為_(kāi)_____.【答案】SKIPIF1<0或SKIPIF1<0【分析】根據(jù)正方形的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得SKIPIF1<0,然后利用“SKIPIF1<0”證明SKIPIF1<0和SKIPIF1<0全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得SKIPIF1<0,然后分點(diǎn)F在線段SKIPIF1<0上和SKIPIF1<0的延長(zhǎng)線上兩種情況討論求解即可.【詳解】解:SKIPIF1<0正方形SKIPIF1<0的面積為3,SKIPIF1<0,SKIPIF1<0,根據(jù)旋轉(zhuǎn)的性質(zhì)可得SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①點(diǎn)F在線段SKIPIF1<0上時(shí),SKIPIF1<0,②點(diǎn)F在SKIPIF1<0的延長(zhǎng)線上時(shí),SKIPIF1<0,綜上所述,SKIPIF1<0的長(zhǎng)為SKIPIF1<0或SKIPIF1<0,故答案為:SKIPIF1<0或SKIPIF1<0.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形的判定與性質(zhì),熟記各性質(zhì)并求出全等三角形是解題的關(guān)鍵,難點(diǎn)在于要分情況討論.【考向六與圓的分類(lèi)討論問(wèn)題】例題:(2022秋·江蘇宿遷·九年級(jí)統(tǒng)考期中)如圖,將一塊三角板放置在SKIPIF1<0中,點(diǎn)A、B在圓上,SKIPIF1<0為直角,SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0上一點(diǎn),則SKIPIF1<0的度數(shù)是_____.【答案】SKIPIF1<0或SKIPIF1<0【分析】根據(jù)點(diǎn)P的位置分兩種情況討論,即可得出答案.【詳解】解:如圖:當(dāng)點(diǎn)P在優(yōu)弧SKIPIF1<0上時(shí),連接SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;當(dāng)點(diǎn)SKIPIF1<0在劣弧SKIPIF1<0上時(shí),連接SKIPIF1<0,SKIPIF1<0,∵四邊形SKIPIF1<0為圓內(nèi)接四邊形,∴SKIPIF1<0,∴SKIPIF1<0,綜上分析可知,SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論