版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省江陰初級中學(xué)2024屆中考數(shù)學(xué)仿真試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.二次函數(shù)y=ax2+c的圖象如圖所示,正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標(biāo)系中的圖象可能是()A. B. C. D.2.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.3.如圖,在平面直角坐標(biāo)系中,點A在x軸的正半軸上,點B的坐標(biāo)為(0,4),將△ABO繞點B逆時針旋轉(zhuǎn)60°后得到△A'BO',若函數(shù)y=(x>0)的圖象經(jīng)過點O',則k的值為()A.2 B.4 C.4 D.84.若點都是反比例函數(shù)的圖象上的點,并且,則下列各式中正確的是(()A. B. C. D.5.已知,則的值為A. B. C. D.6.一、單選題如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1257.下列計算正確的是()A.2x+3x=5x B.2x?3x=6x C.(x3)2=5 D.x3﹣x2=x8.“單詞的記憶效率”是指復(fù)習(xí)一定量的單詞,一周后能正確默寫出的單詞個數(shù)與復(fù)習(xí)的單詞個數(shù)的比值.右圖描述了某次單詞復(fù)習(xí)中四位同學(xué)的單詞記憶效率與復(fù)習(xí)的單詞個數(shù)的情況,則這四位同學(xué)在這次單詞復(fù)習(xí)中正確默寫出的單詞個數(shù)最多的是()A. B. C. D.9.如圖,小明為了測量河寬AB,先在BA延長線上取一點D,再在同岸取一點C,測得∠CAD=60°,∠BCA=30°,AC=15m,那么河AB寬為()A.15m B.m C.m D.m10.如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.11.下面四個幾何體中,左視圖是四邊形的幾何體共有()A.1個 B.2個 C.3個 D.4個12.如圖,空心圓柱體的左視圖是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若,則=_____.14.如圖,△ABC與△DEF位似,點O為位似中心,若AC=3DF,則OE:EB=_____.15.自2008年9月南水北調(diào)中線京石段應(yīng)急供水工程通水以來,截至2018年5月8日5時52分,北京市累計接收河北四庫來水和丹江口水庫來水達(dá)50億立方米.已知丹江口水庫來水量比河北四庫來水量的2倍多1.82億立方米,求河北四庫來水量.設(shè)河北四庫來水量為x億立方米,依題意,可列一元一次方程為_____.16.若順次連接四邊形ABCD四邊中點所得的四邊形是矩形,則原四邊形的對角線AC、BD所滿足的條件是_____.17.若圓錐的母線長為4cm,其側(cè)面積,則圓錐底面半徑為cm.18.標(biāo)號分別為1,2,3,4,……,n的n張標(biāo)簽(除標(biāo)號外其它完全相同),任摸一張,若摸得奇數(shù)號標(biāo)簽的概率大于0.5,則n可以是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.從中任意摸出1個球,恰好摸到紅球的概率是;先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.20.(6分)已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.21.(6分)我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學(xué)生共有______人,扇形統(tǒng)計圖中“了解”部分所對應(yīng)扇形的圓心角為______°.(2)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為_______人.(3)若從對校園安全知識達(dá)到“了解”程度的3個女生A、B、C和2個男生M、N中分別隨機(jī)抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.22.(8分)某商場同時購進(jìn)甲、乙兩種商品共200件,其進(jìn)價和售價如表,商品名稱甲乙進(jìn)價(元/件)80100售價(元/件)160240設(shè)其中甲種商品購進(jìn)x件,該商場售完這200件商品的總利潤為y元.(1)求y與x的函數(shù)關(guān)系式;(2)該商品計劃最多投入18000元用于購買這兩種商品,則至少要購進(jìn)多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎(chǔ)上,實際進(jìn)貨時,生產(chǎn)廠家對甲種商品的出廠價下調(diào)a元(50<a<70)出售,且限定商場最多購進(jìn)120件,若商場保持同種商品的售價不變,請你根據(jù)以上信息及(2)中的條件,設(shè)計出使該商場獲得最大利潤的進(jìn)貨方案.23.(8分)如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E,使AE∥BC,連接AE.求證:四邊形ADCE是矩形;①若AB=17,BC=16,則四邊形ADCE的面積=.②若AB=10,則BC=時,四邊形ADCE是正方形.24.(10分)為了提高學(xué)生書寫漢字的能力,增強(qiáng)保護(hù)漢子的意識,某校舉辦了首屆“漢字聽寫大賽”,學(xué)生經(jīng)選拔后進(jìn)入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學(xué)生成績?yōu)椋ǚ郑?,將其按分?jǐn)?shù)段分為五組,繪制出以下不完整表格:組別
成績(分)
頻數(shù)(人數(shù))
頻率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
請根據(jù)表格提供的信息,解答以下問題:本次決賽共有名學(xué)生參加;直接寫出表中a=,b=;請補(bǔ)全下面相應(yīng)的頻數(shù)分布直方圖;若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為.25.(10分)解不等式組.26.(12分)如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點,點A(2,5)在反比例函數(shù)的圖象上,過點A的直線y=x+b交x軸于點B.求k和b的值;求△OAB的面積.27.(12分)如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過點A的直線CD⊥MN于點D,連接BD.(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數(shù)量關(guān)系.經(jīng)過觀察思考,小明出一種思路:如圖1,過點B作BE⊥BD,交MN于點E,進(jìn)而得出:DC+AD=BD.(2)探究證明將直線MN繞點A順時針旋轉(zhuǎn)到圖2的位置寫出此時線段DC,AD,BD之間的數(shù)量關(guān)系,并證明(3)拓展延伸在直線MN繞點A旋轉(zhuǎn)的過程中,當(dāng)△ABD面積取得最大值時,若CD長為1,請直接寫B(tài)D的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)二次函數(shù)圖像位置確定a0,c0,即可確定正比例函數(shù)和反比例函數(shù)圖像位置.【詳解】解:由二次函數(shù)的圖像可知a0,c0,∴正比例函數(shù)過二四象限,反比例函數(shù)過一三象限.故選C.【點睛】本題考查了函數(shù)圖像的性質(zhì),屬于簡單題,熟悉系數(shù)與函數(shù)圖像的關(guān)系是解題關(guān)鍵.2、C【解析】試題解析:A.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C.既是中心對稱圖又是軸對稱圖形,故本選項正確;D.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.3、C【解析】
根據(jù)題意可以求得點O'的坐標(biāo),從而可以求得k的值.【詳解】∵點B的坐標(biāo)為(0,4),
∴OB=4,
作O′C⊥OB于點C,
∵△ABO繞點B逆時針旋轉(zhuǎn)60°后得到△A'BO',
∴O′B=OB=4,
∴O′C=4×sin60°=2,BC=4×cos60°=2,
∴OC=2,
∴點O′的坐標(biāo)為:(2,2),
∵函數(shù)y=(x>0)的圖象經(jīng)過點O',
∴2=,得k=4,
故選C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征、坐標(biāo)與圖形的變化,解題的關(guān)鍵是利用數(shù)形結(jié)合的思想和反比例函數(shù)的性質(zhì)解答.4、B【解析】
解:根據(jù)題意可得:∴反比例函數(shù)處于二、四象限,則在每個象限內(nèi)為增函數(shù),且當(dāng)x<0時y>0,當(dāng)x>0時,y<0,∴<<.5、C【解析】由題意得,4?x?0,x?4?0,解得x=4,則y=3,則=,故選:C.6、B【解析】
根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進(jìn)而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運(yùn)用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.7、A【解析】
依據(jù)合并同類項法則、單項式乘單項式法則、積的乘方法則進(jìn)行判斷即可.【詳解】A、2x+3x=5x,故A正確;B、2x?3x=6x2,故B錯誤;C、(x3)2=x6,故C錯誤;D、x3與x2不是同類項,不能合并,故D錯誤.故選A.【點睛】本題主要考查的是整式的運(yùn)算,熟練掌握相關(guān)法則是解題的關(guān)鍵.8、C【解析】分析:在四位同學(xué)中,M同學(xué)單詞記憶效率最高,但是復(fù)習(xí)的單詞最少,T同學(xué)復(fù)習(xí)的單詞最多,但是他的單詞記憶效率最低,N,S兩位同學(xué)的單詞記憶效率基本相同,但是S同學(xué)復(fù)習(xí)的單詞最多,這四位同學(xué)在這次單詞復(fù)習(xí)中正確默寫出的單詞個數(shù)最多的應(yīng)該是S.詳解:在四位同學(xué)中,M同學(xué)單詞記憶效率最高,但是復(fù)習(xí)的單詞最少,T同學(xué)復(fù)習(xí)的單詞最多,但是他的單詞記憶效率最低,N,S兩位同學(xué)的單詞記憶效率基本相同,但是S同學(xué)復(fù)習(xí)的單詞最多,這四位同學(xué)在這次單詞復(fù)習(xí)中正確默寫出的單詞個數(shù)最多的應(yīng)該是S.故選C.點睛:考查函數(shù)的圖象,正確理解題目的意思是解題的關(guān)鍵.9、A【解析】過C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=AC=×15=7.5m,CE=AC?cos30°=15×=,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE?tan60°=×=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故選A.【點睛】本題考查的知識點是解直角三角形的應(yīng)用,關(guān)鍵是構(gòu)建直角三角形,解直角三角形求出答案.10、A【解析】
連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結(jié)論.【詳解】連接OT、OC,∵PT切⊙O于點T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M(jìn)是OP的中點,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運(yùn)用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了等腰三角形的判定與性質(zhì)和含30度的直角三角形三邊的關(guān)系.11、B【解析】簡單幾何體的三視圖.【分析】左視圖是從左邊看到的圖形,因為圓柱的左視圖是矩形,圓錐的左視圖是等腰三角形,球的左視圖是圓,正方體的左視圖是正方形,所以,左視圖是四邊形的幾何體是圓柱和正方體2個.故選B.12、C【解析】
根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看是三個矩形,中間矩形的左右兩邊是虛線,故選C.【點睛】本題考查了簡單幾何體的三視圖,從左邊看得到的圖形是左視圖.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】=.14、1:2【解析】
△ABC與△DEF是位似三角形,則DF∥AC,EF∥BC,先證明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,據(jù)此可得答案.【詳解】解:∵△ABC與△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,則OE:EB=1:2故答案為:1:2【點睛】本題考查了位似的相關(guān)知識,位似是相似的特殊形式,位似比等于相似比,位似圖形的對應(yīng)頂點的連線平行或共線.15、【解析】【分析】河北四庫來水量為x億立方米,根據(jù)等量關(guān)系:河北四庫來水和丹江口水庫來水達(dá)50億立方米,列方程即可得.【詳解】河北四庫來水量為x億立方米,則丹江口水庫來水量為(2x+1.82)億立方米,由題意得:x+(2x+1.82)=50,故答案為x+(2x+1.82)=50.【點睛】本題考查了一元一次方程的應(yīng)用,弄清題意,找出等量關(guān)系列出方程是關(guān)鍵.16、AC⊥BD【解析】
根據(jù)題意畫出相應(yīng)的圖形,如圖所示,由四邊形EFGH為矩形,根據(jù)矩形的四個角為直角得到∠FEH=90°,又EF為三角形ABD的中位線,根據(jù)中位線定理得到EF與DB平行,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)得到∠EMO=90°,同理根據(jù)三角形中位線定理得到EH與AC平行,再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)得到∠AOD=90°,根據(jù)垂直定義得到AC與BD垂直.【詳解】∵四邊形EFGH是矩形,∴∠FEH=90°,又∵點E、F、分別是AD、AB、各邊的中點,∴EF是三角形ABD的中位線,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵點E、H分別是AD、CD各邊的中點,∴EH是三角形ACD的中位線,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案為:AC⊥BD.【點睛】此題考查了矩形的性質(zhì),三角形的中位線定理,以及平行線的性質(zhì).根據(jù)題意畫出圖形并熟練掌握矩形性質(zhì)及三角形中位線定理是解題關(guān)鍵.17、3【解析】∵圓錐的母線長是5cm,側(cè)面積是15πcm2,∴圓錐的側(cè)面展開扇形的弧長為:l==6π,∵錐的側(cè)面展開扇形的弧長等于圓錐的底面周長,∴r==3cm,18、奇數(shù).【解析】
根據(jù)概率的意義,分n是偶數(shù)和奇數(shù)兩種情況分析即可.【詳解】若n為偶數(shù),則奇數(shù)與偶數(shù)個數(shù)相等,即摸得奇數(shù)號標(biāo)簽的概率為0.5,若n為奇數(shù),則奇數(shù)比偶數(shù)多一個,此時摸得奇數(shù)號標(biāo)簽的概率大于0.5,故答案為:奇數(shù).【點睛】本題考查概率公式,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)(2)【解析】試題分析:(1)因為總共有4個球,紅球有2個,因此可直接求得紅球的概率;(2)根據(jù)題意,列表表示小球摸出的情況,然后找到共12種可能,而兩次都是紅球的情況有2種,因此可求概率.試題解析:解:(1).(2)用表格列出所有可能的結(jié)果:第二次
第一次
紅球1
紅球2
白球
黑球
紅球1
(紅球1,紅球2)
(紅球1,白球)
(紅球1,黑球)
紅球2
(紅球2,紅球1)
(紅球2,白球)
(紅球2,黑球)
白球
(白球,紅球1)
(白球,紅球2)
(白球,黑球)
黑球
(黑球,紅球1)
(黑球,紅球2)
(黑球,白球)
由表格可知,共有12種可能出現(xiàn)的結(jié)果,并且它們都是等可能的,其中“兩次都摸到紅球”有2種可能.∴P(兩次都摸到紅球)==.考點:概率統(tǒng)計20、等腰直角三角形【解析】
首先把等式的左右兩邊分解因式,再考慮等式成立的條件,從而判斷△ABC的形狀.【詳解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC為直角三角形或等腰三角形或等腰直角三角形.考點:勾股定理的逆定理.21、(1)60,30;;(2)300;(3)【解析】
(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學(xué)生數(shù),繼而求得扇形統(tǒng)計圖中“了解”部分所對應(yīng)扇形的圓心角;(2)利用樣本估計總體的方法,即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好抽到女生A的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調(diào)查的學(xué)生共有:30÷50%=60(人);∵了解部分的人數(shù)為60﹣(15+30+10)=5,∴扇形統(tǒng)計圖中“了解”部分所對應(yīng)扇形的圓心角為:×360°=30°;故答案為60,30;(2)根據(jù)題意得:900×=300(人),則估計該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為300人,故答案為300;(3)畫樹狀圖如下:所有等可能的情況有6種,其中抽到女生A的情況有2種,所以P(抽到女生A)==.【點睛】此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖與扇形統(tǒng)計圖.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)y=﹣60x+28000;(2)若售完這些商品,則商場可獲得的最大利潤是22000元;(3)商場應(yīng)購進(jìn)甲商品120件,乙商品80件,獲利最大【解析】分析:(1)根據(jù)總利潤=(甲的售價-甲的進(jìn)價)×購進(jìn)甲的數(shù)量+(乙的售價-乙的進(jìn)價)×購進(jìn)乙的數(shù)量代入列關(guān)系式,并化簡即可;(2)根據(jù)總成本≤18000列不等式即可求出x的取值,再根據(jù)函數(shù)的增減性確定其最值問題;(3)把50<a<70分三種情況討論:一次項x的系數(shù)大于0、等于0、小于0,根據(jù)函數(shù)的增減性得出結(jié)論.詳解:(1)根據(jù)題意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,則y與x的函數(shù)關(guān)系式為:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要購進(jìn)100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y隨x的增大而減小,∴當(dāng)x=100時,y有最大值,y大=﹣60×100+28000=22000,∴若售完這些商品,則商場可獲得的最大利潤是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①當(dāng)50<a<60時,a﹣60<0,y隨x的增大而減小,∴當(dāng)x=100時,y有最大利潤,即商場應(yīng)購進(jìn)甲商品100件,乙商品100件,獲利最大,②當(dāng)a=60時,a﹣60=0,y=28000,即商場應(yīng)購進(jìn)甲商品的數(shù)量滿足100≤x≤120的整數(shù)件時,獲利最大,③當(dāng)60<a<70時,a﹣60>0,y隨x的增大而增大,∴當(dāng)x=120時,y有最大利潤,即商場應(yīng)購進(jìn)甲商品120件,乙商品80件,獲利最大.點睛:本題是一次函數(shù)和一元一次不等式的綜合應(yīng)用,屬于銷售利潤問題,在此類題中,要明確售價、進(jìn)價、利潤的關(guān)系式:單件利潤=售價-進(jìn)價,總利潤=單個利潤×數(shù)量;認(rèn)真讀題,弄清題中的每一個條件;對于最值問題,可利用一次函數(shù)的增減性來解決:形如y=kx+b中,當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減?。?3、(1)見解析;(2)①1;②.【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)得出四邊形ADCE是平行四邊形,根據(jù)垂直推出∠ADC=90°,根據(jù)矩形的判定得出即可;(2)①求出DC,根據(jù)勾股定理求出AD,根據(jù)矩形的面積公式求出即可;②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的長.試題解析:(1)證明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四邊形ADCE是平行四邊形.∵AD是BC邊上的高,∴∠ADC=90°.∴□ADCE是矩形.(2)①解:∵AD是等腰△ABC底邊BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===12,∴四邊形ADCE的面積是AD×DC=12×8=1.②當(dāng)BC=時,DC=DB=.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.點睛:本題考查了平行四邊形的判定,矩形的判定和性質(zhì),等腰三角形的性質(zhì),勾股定理的應(yīng)用,能綜合運(yùn)用定理進(jìn)行推理和計算是解答此題的關(guān)鍵,比較典型,難度適中.24、(1)50;(2)a=16,b=0.28;(3)答案見解析;(4)48%.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代化糧庫建設(shè)項目可行性研究報告
- 汽車裝調(diào)工、維修工理論2023版專項試卷
- 2024安全管理技術(shù)競賽(單選)專項測試題附答案
- XX中學(xué)“三防”建設(shè)情況匯報
- 專題十一網(wǎng)絡(luò)廣告 (課件)職教高考電子商務(wù)專業(yè)《網(wǎng)絡(luò)營銷實務(wù)》
- 《學(xué)前兒童衛(wèi)生保健》 教案 3 循環(huán)系統(tǒng)、消化系統(tǒng)的衛(wèi)生保健
- 高中英語語法-名詞性從句精講
- 《學(xué)前兒童衛(wèi)生保健》 課件 5.1 學(xué)前兒童意外事故的急救
- 高中英語語法-被動語態(tài)
- 第1章 數(shù)據(jù)與統(tǒng)計學(xué)課件
- 2022小升初語文真題測試卷及答案
- 《建筑工程設(shè)計文件編制深度規(guī)定》2016版
- 廣西壯族自治區(qū)社會組織變更登記表【模板】
- 視覺設(shè)計流程與規(guī)范1
- 餐飲服務(wù)質(zhì)量監(jiān)管與程序
- G414(五) 預(yù)應(yīng)力鋼筋混凝土工字形屋面梁
- 中國古典樂器介紹
- PROE5.0布線設(shè)計基本操作
- 血漿置換完整版
- CJJ市政道路工程質(zhì)量檢驗評定標(biāo)準(zhǔn)
- 血常規(guī)檢查+肝功能體檢報告模板
評論
0/150
提交評論