版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.小明、小亮、小梅、小花四人共同探究函數(shù)的值的情況,他們作了如下分工:小明負(fù)責(zé)找函數(shù)值為1時的值,小亮負(fù)責(zé)找函數(shù)值為0時的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值.幾分鐘后,各自通報探究的結(jié)論,其中錯誤的是()A.小明認(rèn)為只有當(dāng)時,函數(shù)值為1;B.小亮認(rèn)為找不到實數(shù),使函數(shù)值為0;C.小花發(fā)現(xiàn)當(dāng)取大于2的實數(shù)時,函數(shù)值隨的增大而增大,因此認(rèn)為沒有最大值;D.小梅發(fā)現(xiàn)函數(shù)值隨的變化而變化,因此認(rèn)為沒有最小值2.在實數(shù)|﹣3|,﹣2,0,π中,最小的數(shù)是()A.|﹣3| B.﹣2 C.0 D.π3.如圖,公園中一正方形水池中有一噴泉,噴出的水流呈拋物線狀,測得噴出口高出水面0.8m,水流在離噴出口的水平距離1.25m處達(dá)到最高,密集的水滴在水面上形成了一個半徑為3m的圓,考慮到出水口過高影響美觀,水滴落水形成的圓半徑過大容易造成水滴外濺到池外,現(xiàn)決定通過降低出水口的高度,使落水形成的圓半徑為2.75m,則應(yīng)把出水口的高度調(diào)節(jié)為高出水面()A.0.55米 B.米 C.米 D.0.4米4.若點是直線上一點,已知,則的最小值是()A.4 B. C. D.25.二次函數(shù)的圖象如圖所示,反比例函數(shù)與一次函數(shù)在同一平面直角坐標(biāo)系中的大致圖象是A. B. C. D.6.如圖,拋物線的對稱軸為,且過點,有下列結(jié)論:①>0;②>0;③;④>0.其中正確的結(jié)論是()A.①③ B.①④ C.①② D.②④7.某小組做“用頻率估計概率”的試驗時,統(tǒng)計了某結(jié)果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計圖,則符合這一結(jié)果的試驗最有可能的是()A.在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”B.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌花色是紅桃C.袋子中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球D.?dāng)S一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)是偶數(shù)8.小明將如圖兩水平線l1、l2的其中一條當(dāng)成x軸,且向右為正方向;兩條直線l3、l4的其中一條當(dāng)成y軸,且向上為正方向,并在此坐標(biāo)平面中畫出二次函數(shù)y=ax2﹣2a2x+1的圖象,則()A.l1為x軸,l3為y軸 B.l2為x軸,l3為y軸C.l1為x軸,l4為y軸 D.l2為x軸,l4為y軸9.如圖,在平面直角坐標(biāo)系xOy中,點A為(0,3),點B為(2,1),點C為(2,-3).則經(jīng)畫圖操作可知:△ABC的外心坐標(biāo)應(yīng)是()A. B. C. D.10.如圖,在平面直角坐標(biāo)系中,已知點的坐標(biāo)是,點是曲線上的一個動點,作軸于點,當(dāng)點的橫坐標(biāo)逐漸減小時,四邊形的面積將會()A.逐漸增大 B.不變 C.逐漸減小 D.先減小后增大二、填空題(每小題3分,共24分)11.如果兩個相似三角形的對應(yīng)邊的比是4:5,那么這兩個三角形的面積比是_____.12.若是方程的一個根,則代數(shù)式的值是______.13.有一座拋物線形拱橋,正常水位時橋下水面寬為,拱頂距水面,在如圖的直角坐標(biāo)系中,該拋物線的解析式為___________.14.反比例函數(shù)的圖象上有一點P(2,n),將點P向右平移1個單位,再向下平移1個單位得到點Q,若點Q也在該函數(shù)的圖象上,則k=____________.15.如圖,把繞著點順時針方向旋轉(zhuǎn)角度(),得到,若,,三點在同一條直線上,,則的度數(shù)是___________.16.設(shè)分別為一元二次方程的兩個實數(shù)根,則______.17.一個幾何體是由一些大小相同的小正方塊擺成的,其俯視圖與主視圖如圖所示,則組成這個幾何體的小正方塊最多有________.18.如圖,量角器的0度刻度線為,將一矩形直尺與量角器部分重疊,使直尺一邊與量角器相切于點,直尺另一邊交量角器于點,,量得,點在量角器上的讀數(shù)為,則該直尺的寬度為____________.三、解答題(共66分)19.(10分)如圖,在四邊形ABCD中,AB∥DC,BC>AD,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設(shè)運動時間為t秒(0<t<5).(1)求證:△ACD∽△BAC;(2)求DC的長;(3)試探究:△BEF可以為等腰三角形嗎?若能,求t的值;若不能,請說明理由.20.(6分)如圖,把點以原點為中心,分別逆時針旋轉(zhuǎn),,,得到點,,.(1)畫出旋轉(zhuǎn)后的圖形,寫出點,,的坐標(biāo),并順次連接、,,各點;(2)求出四邊形的面積;(3)結(jié)合(1),若把點繞原點逆時針旋轉(zhuǎn)到點,則點的坐標(biāo)是什么?21.(6分)已知:如圖,將△ADE繞點A順時針旋轉(zhuǎn)得到△ABC,點E對應(yīng)點C恰在D的延長線上,若BC∥AE.求證:△ABD為等邊三角形.22.(8分)如圖,點B、D、E在一條直線上,BE交AC于點F,,且∠BAD=∠CAE.(1)求證:△ABC∽△ADE;(2)求證:△AEF∽△BFC.23.(8分)定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.理解:(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(畫出1個即可);(2)如圖2,在四邊形ABCD中,,對角線BD平分∠ABC.求證:BD是四邊形ABCD的“相似對角線”;運用:(3)如圖3,已知FH是四邊形EFGH的“相似對角線”,∠EFH=∠HFG=.連接EG,若△EFG的面積為,求FH的長.24.(8分)如圖,矩形中,.為邊上一動點(不與重合),過點作交直線于.(1)求證:;(2)當(dāng)為中點時,恰好為的中點,求的值.25.(10分)如圖,拋物線經(jīng)過點,與軸相交于,兩點,(1)拋物線的函數(shù)表達(dá)式;(2)點在拋物線的對稱軸上,且位于軸的上方,將沿沿直線翻折得到,若點恰好落在拋物線的對稱軸上,求點和點的坐標(biāo);(3)設(shè)是拋物線上位于對稱軸右側(cè)的一點,點在拋物線的對稱軸上,當(dāng)為等邊三角形時,求直線的函數(shù)表達(dá)式.26.(10分)如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點E,F(xiàn)是OE上的一點,使CF∥BD.(1)求證:BE=CE;(2)若BC=8,AD=10,求四邊形BFCD的面積.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)二次函數(shù)的最值及圖象上點的坐標(biāo)特點回答即可.【詳解】因為該拋物線的頂點是,所以正確;根據(jù)二次函數(shù)的頂點坐標(biāo),知它的最小值是1,所以正確;根據(jù)圖象,知對稱軸的右側(cè),即時,y隨x的增大而增大,所以正確;因為二次項系數(shù)1>0,有最小值,所以錯誤;故選:D.【點睛】本題主要考查了二次函數(shù)圖象與最值問題,準(zhǔn)確分析是解題的關(guān)鍵.2、B【分析】直接利用利用絕對值的性質(zhì)化簡,進(jìn)而比較大小得出答案.【詳解】在實數(shù)|-3|,-1,0,π中,|-3|=3,則-1<0<|-3|<π,故最小的數(shù)是:-1.故選B.【點睛】此題主要考查了實數(shù)大小比較以及絕對值,正確掌握實數(shù)比較大小的方法是解題關(guān)鍵.3、B【分析】如圖,以O(shè)為原點,建立平面直角坐標(biāo)系,由題意得到對稱軸為x=1.25=,A(0,0.8),C(3,0),列方程組求得函數(shù)解析式,即可得到結(jié)論.【詳解】解:如圖,以O(shè)為原點,建立平面直角坐標(biāo)系,由題意得,對稱軸為x=1.25=,A(0,0.8),C(3,0),設(shè)解析式為y=ax2+bx+c,∴,解得:,所以解析式為:y=x2+x+,當(dāng)x=2.75時,y=,∴使落水形成的圓半徑為2.75m,則應(yīng)把出水口的高度調(diào)節(jié)為高出水面08﹣=,故選:B.【點睛】本題考查了二次函數(shù)的實際應(yīng)用,根據(jù)題意建立合適的坐標(biāo)系,找到點的坐標(biāo),用待定系數(shù)法解出函數(shù)解析式是解題的關(guān)鍵4、B【分析】根據(jù)題意先確定點B在哪個位置時的最小值,先作點A關(guān)于直線CD的對稱點E,點B、E、O三點在一條直線上,再根據(jù)題意,連結(jié)OE與CD的交點就是點B,求出OE的長即為所求.【詳解】解:在y=-x+2中,當(dāng)x=0時,y=2,當(dāng)y=0時,0=-x+2,解得x=2,
∴直線y=-x+2與x的交點為C(2.0),與y軸的交點為D(0,2),如圖,∴OC=OD=2,∵OC⊥OD,:OC⊥OD,∴△OCD是等腰直角三角形,
∴∠OCD=45°,∴A(0,-2),∴OA=OC=2
連接AC,如圖,
∵OA⊥OC,
∴△OCA是等腰直角三角形,
∴∠OCA=45°,
∴∠ACD=∠OCA+∠OCD=90°,
∴.AC⊥CD,
延長AC到點E,使CE=AC,連接BE,作EF⊥軸于點F,
則點E與點A關(guān)于直線y=-x+2對稱,∠EFO=∠AOC=90,
點O、點B、點E三點共線時,OB+AB取最小值,最小值為OE的長,
在△CEF和△CAO中,
∴△CEF≌OCAO(AAS),
∴EF=OA=2,CF=OC=2
∴OF=OC+CF=4,
即OB+AB的最小值為.故選:B【點睛】本題考查的是最短路線問題,找最短路線是解題關(guān)鍵.找一點的對稱點連接另一點和對稱點與對稱軸的交點就是B點.5、B【解析】試題分析:∵由二次函數(shù)的圖象知,a<1,>1,∴b>1.∴由b>1知,反比例函數(shù)的圖象在一、三象限,排除C、D;由知a<1,一次函數(shù)的圖象與y國軸的交點在x軸下方,排除A.故選B.6、C【分析】根據(jù)拋物線的開口方向、對稱軸、與y軸的交點判定系數(shù)符號及運用一些特殊點解答問題.【詳解】由拋物線的開口向下可得:a<0,
根據(jù)拋物線的對稱軸在y軸左邊可得:a,b同號,所以b<0,
根據(jù)拋物線與y軸的交點在正半軸可得:c>0,
∴abc>0,故①正確;
直線x=-1是拋物線y=ax2+bx+c(a≠0)的對稱軸,所以-=-1,可得b=2a,
a-2b+4c=a-4a+4c=-3a+4c,
∵a<0,
∴-3a>0,
∴-3a+4c>0,
即a-2b+4c>0,故②正確;
∵b=2a,a+b+c<0,
∴2a+b≠0,故③錯誤;
∵b=2a,a+b+c<0,
∴b+b+c<0,
即3b+2c<0,故④錯誤;
故選:C.【點睛】此題考查二次函數(shù)圖象與系數(shù)的關(guān)系,掌握二次函數(shù)的性質(zhì)、靈活運用數(shù)形結(jié)合思想是解題的關(guān)鍵,解答時,要熟練運用拋物線的對稱性和拋物線上的點的坐標(biāo)滿足拋物線的解析式.7、D【解析】根據(jù)圖可知該事件的概率在0.5左右,在一一篩選選項即可解答.【詳解】根據(jù)圖可知該事件的概率在0.5左右,(1)A事件概率為,錯誤.(2)B事件的概率為,錯誤.(3)C事件概率為,錯誤.(4)D事件的概率為,正確.故選D.【點睛】本題考查概率,能夠根據(jù)事件的條件得出該事件的概率是解答本題的關(guān)鍵.8、D【分析】根據(jù)拋物線的開口向下,可得a<0,求出對稱軸為:直線x=a,則可確定l4為y軸,再根據(jù)圖象與y軸交點,可得出l2為x軸,即可得出答案.【詳解】解:∵拋物線的開口向下,∴a<0,∵y=ax2﹣2a2x+1,∴對稱軸為:直線x=a<0,令x=0,則y=1,∴拋物線與y軸的正半軸相交,∴l(xiāng)2為x軸,l4為y軸.故選:D.【點睛】本題考查了二次函數(shù)的性質(zhì),開口方向由a確定,與y軸的交點由c確定,左同右異確定b的符號.9、C【解析】外心在BC的垂直平分線上,則外心縱坐標(biāo)為-1.故選C.10、C【分析】設(shè)點P的坐標(biāo),表示出四邊形OAPB的面積,由反比例函數(shù)k是定值,當(dāng)點P的橫坐標(biāo)逐漸減小時,四邊形OAPB的面積逐漸減?。驹斀狻奎cA(0,2),則OA=2,
設(shè)點,則,
,
∵為定值,
∴隨著點P的橫坐標(biāo)的逐漸減小時,四邊形AONP的面積逐漸減小
故選:C.【點睛】考查反比例函數(shù)k的幾何意義,用點的坐標(biāo)表示出四邊形的面積是解決問題的關(guān)鍵.二、填空題(每小題3分,共24分)11、16:25【分析】根據(jù)相似三角形的面積的比等于相似比的平方,據(jù)此即可求解.【詳解】解:∵兩個相似三角形的相似比為:,∴這兩個三角形的面積比;故答案為:∶.【點睛】本題考查了相似三角形性質(zhì),解題的關(guān)鍵是熟記相似三角形的性質(zhì).(1)相似三角形周長的比等于相似比;(2)相似三角形面積的比等于相似比的平方;(3)相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于相似比.12、9【分析】根據(jù)方程解的定義,將a代入方程得到含a的等式,將其變形,整體代入所求的代數(shù)式.【詳解】解:∵a是方程的一個根,∴2a2=a+3,∴2a2-a=3,∴.故答案為:9.【點睛】本題考查方程解的定義及代數(shù)式求值問題,理解方程解的定義和整體代入思想是解答此題的關(guān)鍵.13、y=-0.04(x-10)2+4【分析】根據(jù)題意設(shè)所求拋物線的解析式為y=a(x-h)2+k,由已知條件易知h和k的值,再把點C的坐標(biāo)代入求出a的值即可;【詳解】解:設(shè)所求拋物線的解析式為:y=a(x-h)2+k,并假設(shè)拱橋頂為C,如圖所示:∵由AB=20,AB到拱橋頂C的距離為4m,則C(10,4),A(0,0),B(20,0)把A,B,C的坐標(biāo)分別代入得a=-0.04,h=10,k=4拋物線的解析式為y=-0.04(x-10)2+4.故答案為y=-0.04(x-10)2+4.【點睛】本題考查二次函數(shù)的應(yīng)用,熟練掌握并利用待定系數(shù)法求拋物線的解析式是解決問題的關(guān)鍵.14、1【分析】根據(jù)平移的特性寫出點Q的坐標(biāo),由點P、Q均在反比例函數(shù)的圖象上,即可得出k=2n=3(n﹣1),解出即可.【詳解】∵點P的坐標(biāo)為(2,n),則點Q的坐標(biāo)為(3,n﹣1),依題意得:k=2n=3(n﹣1),解得:n=3,∴k=2×3=1,故答案為1.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征、反比例函數(shù)系數(shù)k的幾何意義,解題的關(guān)鍵:由P點坐標(biāo)表示出Q點坐標(biāo).15、【分析】首先根據(jù)鄰補(bǔ)角定義求出∠BCC′=180°-∠BCB′=134°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠BCA=∠C′,AC=AC′,根據(jù)等邊對等角進(jìn)一步可得出∠BCA=∠ACC′=∠C′,再利用三角形內(nèi)角和求出∠CAC′的度數(shù),從而得出α的度數(shù)..【詳解】解:∵B,C,C′三點在同一條直線上,∴∠BCC′=180°-∠BCB′=134°,
又根據(jù)旋轉(zhuǎn)的性質(zhì)可得,∠CAC′=∠BAB′=α,∠BCA=∠C′,AC=AC′,∴∠ACC′=∠C′,∴∠BCA=∠ACC′=∠BCC′=67°=∠C′,
∴∠CAC′=180°-∠ACC′-∠C′=46°,
∴α=46°.
故答案為:46°.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):①對應(yīng)點到旋轉(zhuǎn)中心的距離相等;②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;③旋轉(zhuǎn)前、后的圖形全等.同時也考查了等腰三角形的性質(zhì),三角形的內(nèi)角和以及鄰補(bǔ)角的定義.16、1【分析】先根據(jù)m是的一個實數(shù)根得出,利用一元二次方程根與系數(shù)的關(guān)系得出,然后對原式進(jìn)行變形后整體代入即可得出答案.【詳解】∵m是一元二次方程的一個實數(shù)根,∴,即.由一元二次方程根與系數(shù)的關(guān)系得出,∴.故答案為:1.【點睛】本題主要考查一元二次方程的根及根與系數(shù)的關(guān)系,掌握一元二次方程根與系數(shù)的關(guān)系是解題的關(guān)鍵.17、6【解析】符合條件的最多情況為:即最多為2+2+2=618、【分析】連接OC,OD,OC與AD交于點E,根據(jù)圓周角定理有根據(jù)垂徑定理有:解直角即可.【詳解】連接OC,OD,OC與AD交于點E,直尺的寬度:故答案為【點睛】考查垂徑定理,熟記垂徑定理是解題的關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2)DC=6.4cm;(3)當(dāng)△EFB為等腰三角形時,t的值為秒或秒或秒.【分析】(1)根據(jù)三角形相似的判定定理即可得到結(jié)論;(2)由△ACD∽△BAC,得,結(jié)合=8cm,即可求解;(3)若△EFB為等腰三角形,可分如下三種情況:①當(dāng)BF=BE時,②當(dāng)EF=EB時,③當(dāng)FB=FE時,分別求出t的值,即可.【詳解】(1)∵CD∥AB,∴∠BAC=∠DCA,又AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC;(2)在Rt△ABC中,=8cm,由(1)知,△ACD∽△BAC,∴,即:,解得:DC=6.4cm;(3)△BEF能為等腰三角形,理由如下:由題意得:AF=2t,BE=t,若△EFB為等腰三角形,可分如下三種情況:①當(dāng)BF=BE時,10﹣2t=t,解得:t=;②當(dāng)EF=EB時,如圖1,過點E作AB的垂線,垂足為G,則,此時△BEG∽△BAC,∴,即,解得:t=;③當(dāng)FB=FE時,如圖2,過點F作AB的垂線,垂足為H,則,此時△BFH∽△BAC,∴,即,解得:;綜上所述:當(dāng)△EFB為等腰三角形時,t的值為秒或秒或秒.【點睛】本題主要考查相似三角形的判定和性質(zhì)的綜合以及等腰三角形的性質(zhì)與勾股定理,添加輔助線構(gòu)造相似三角形,是解題的關(guān)鍵.20、(1)詳見解析,,,;(2)50;(3)【分析】(1)根據(jù)題意再表格中得出B、C、D,并順次連接、,,各點即可畫出旋轉(zhuǎn)后的圖形,寫出點,,的坐標(biāo)即可.(2)可證得四邊形ABCD是正方形,根據(jù)正方形的面積公式:正方形的面積=對角線×對角線÷2即可得出結(jié)果.(3)觀察(1)可以得出規(guī)律,旋轉(zhuǎn)后的點的坐標(biāo)和旋轉(zhuǎn)前的點橫縱坐標(biāo)位置相反,且縱坐標(biāo)變?yōu)橄喾磾?shù).【詳解】解:(1)如圖,,,(2)由旋轉(zhuǎn)性質(zhì)可得:,∴,∴四邊形ABCD為正方形,∴(3)根據(jù)題(1)可得出【點睛】本題主要考查的是作圖和旋轉(zhuǎn)的性質(zhì),根據(jù)題目要求準(zhǔn)確的作出圖形是解題的關(guān)鍵.21、證明見解析.【分析】由旋轉(zhuǎn)的性質(zhì)可得,,可得,由平行線的性質(zhì)可得,可得,則可求,可得結(jié)論.【詳解】解:由旋轉(zhuǎn)知:△ADE≌△ABC,∴∠ACB=∠E,AC=AE,∴∠E=∠ACE,又BC∥AE,∴∠BCE+∠E=180°,即∠ACB+∠ACE+∠E=180°,∴∠E=60°,又AC=AE,∴△ACE為等邊三角形,∴∠CAE=60°又∠BAC=∠DAE∴∠BAD=∠CAE=60°又AB=AD∴△ABD為等邊三角形.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),平行線的性質(zhì)等知識,求出是本題的關(guān)鍵.22、(1)見解析;(2)見解析【分析】(1)由已知先證明∠BAC=∠DAE,繼而根據(jù)兩邊對應(yīng)成比例且夾角相等即可得結(jié)論;(2)根據(jù)相似三角形的性質(zhì)定理得到∠C=∠E,結(jié)合圖形,證明即可.【詳解】證明:如圖,(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E,在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BFC.【點睛】本題考查的是相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.23、(1)詳見解析;(2)詳見解析;(3)4【分析】(1)根據(jù)“相似對角線”的定義,利用方格紙的特點可找到D點的位置.(2)通過導(dǎo)出對應(yīng)角相等證出∽,根據(jù)四邊形ABCD的“相似對角線”的定義即可得出BD是四邊形ABCD的“相似對角線”.(3)根據(jù)四邊形“相似對角線”的定義,得出∽,利用對應(yīng)邊成比例,結(jié)合三角形面積公式即可求.【詳解】解:(1)如圖1所示.(2)證明:平分,∽∴BD是四邊形的“相似對角線”.(3)是四邊形的“相似對角線”,三角形與三角形相似.又∽過點作垂足為則【點睛】本題考查相似三角形的判定與性質(zhì)的綜合應(yīng)用及解直角三角形,對于這種新定義閱讀材料題目讀,懂題意是解答此題的關(guān)鍵.24、(1)見解析;(2)的值為.【分析】(1)根據(jù)矩形的性質(zhì)可得,根據(jù)余角的性質(zhì)可得,進(jìn)而可得結(jié)論;(2)根據(jù)題意可得BP、CP、CE的值,然后根據(jù)(1)中相似三角形的性質(zhì)可得關(guān)于m的方程,解方程即得結(jié)果.【詳解】解:(1)證明:四邊形是矩形,,,,,,∴∽;(2)為中點,為的中點,且,,,,∵∽,,即,解得:,即的值為.【點睛】本題考查了矩形的性質(zhì)和相似三角形的判定和性質(zhì),屬于??碱}型,熟練掌握基本知識是解題關(guān)鍵.25、(1);(2)點的坐標(biāo)為;(3)直線的函數(shù)表達(dá)式為或.【分析】(1)根據(jù)待定系數(shù)法確定函數(shù)關(guān)系式即可求解;(2)設(shè)拋物線的對稱軸與軸交于點,則點的坐標(biāo)為,.由翻折得,求出CH’的長,可得,求出DH的長,則可得D的坐標(biāo);(3)由題意可知為等邊三角形,分兩種討論①當(dāng)點在軸上方時,點在軸上方,連接,,證出,可得垂直平分,點在直線上,可求出直線的函數(shù)表達(dá)式;②當(dāng)點在軸下方時,點在軸下方,同理可求出另一條直線解析式.【詳解】(1)由題意,得解得拋
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美容院二零二五年度美容儀器租賃及維修服務(wù)合同2篇
- 2025年新型銅箔生產(chǎn)線自動化升級改造合同范本3篇
- 二零二五年度城市居民住房按揭貸款合同范本8篇
- 二零二五年度空運貨物出口運輸及保險服務(wù)合同2篇
- 二零二五年度文化產(chǎn)業(yè)創(chuàng)新發(fā)展貸款合同模板4篇
- 2025年度智慧城市基礎(chǔ)設(shè)施搭建委托協(xié)議4篇
- 2025年度個人二手車買賣合同范本標(biāo)準(zhǔn)版4篇
- 顫音音響發(fā)生器課程設(shè)計
- 2024碎石加工廠產(chǎn)品質(zhì)量追溯體系建立合同范本3篇
- 單元四吊頂與隔墻工程
- 第22單元(二次函數(shù))-單元測試卷(2)-2024-2025學(xué)年數(shù)學(xué)人教版九年級上冊(含答案解析)
- 安全常識課件
- 河北省石家莊市2023-2024學(xué)年高一上學(xué)期期末聯(lián)考化學(xué)試題(含答案)
- 小王子-英文原版
- 新版中國食物成分表
- 2024年山東省青島市中考生物試題(含答案)
- 河道綜合治理工程技術(shù)投標(biāo)文件
- 專題24 短文填空 選詞填空 2024年中考英語真題分類匯編
- 再生障礙性貧血課件
- 產(chǎn)后抑郁癥的護(hù)理查房
- 2024年江蘇護(hù)理職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
評論
0/150
提交評論