江蘇省蘇州吳中區(qū)五校聯(lián)考2022年數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第1頁
江蘇省蘇州吳中區(qū)五校聯(lián)考2022年數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第2頁
江蘇省蘇州吳中區(qū)五校聯(lián)考2022年數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第3頁
江蘇省蘇州吳中區(qū)五校聯(lián)考2022年數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第4頁
江蘇省蘇州吳中區(qū)五校聯(lián)考2022年數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.下列一元二次方程中有兩個不相等的實數(shù)根的方程是()A.(x+2)2=0 B.x2+3=0 C.x2+2x-17=0 D.x2+x+5=02.如圖,已知A(-3,3),B(-1,1.5),將線段AB向右平移5個單位長度后,點A、B恰好同時落在反比例函數(shù)(x>0)的圖象上,則等于()A.3 B.4 C.5 D.63.函數(shù)y=(k<0),當x<0時,該函數(shù)圖像在A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在數(shù)軸上,點A所表示的實數(shù)為3,點B所表示的實數(shù)為a,⊙A的半徑為2,下列說法中不正確的是()A.當1<a<5時,點B在⊙A內B.當a<5時,點B在⊙A內C.當a<1時,點B在⊙A外D.當a>5時,點B在⊙A外5.下列事件:①經(jīng)過有交通信號燈的路口,遇到紅燈;②擲一枚均勻的正方體骰子,骰子落地后朝上的點數(shù)不是奇數(shù)便是偶數(shù);③長為5cm、5cm、11cm的三條線段能圍成一個三角形;④買一張體育彩票中獎。其中隨機事件有()A.1個 B.2個 C.3個 D.4個6.已知兩個相似三角形的相似比為4:9,則這兩個三角形的對應高的比為()A. B. C. D.7.二次函數(shù)y=ax2+bx+c的圖象如圖所示,若點A(-2.2,y1),B(-3.2,y2)是圖象上的兩點,則y1與y2的大小關系是().A.y1<y2 B.y1=y(tǒng)2 C.y1>y2 D.不能確定8.點A、B、C是平面內不在同一條直線上的三點,點D是平面內任意一點,若A、B、C、D四點恰能構成一個平行四邊形,則在平面內符合這樣條件的點D有()A.1個 B.2個 C.3個 D.4個9.已知二次函數(shù)y=-x2+2mx+2,當x<-2時,y的值隨x的增大而增大,則實數(shù)m()A.m=-2 B.m>-2 C.m≥-2 D.m≤-210.如圖,在等邊△ABC中,P為BC上一點,D為AC上一點,且∠APD=60°,BP=2,CD=1,則△ABC的邊長為()A.3 B.4 C.5 D.6二、填空題(每小題3分,共24分)11.如圖,要測量池塘兩岸相對的A,B兩點間的距離,可以在池塘外選一點C,連接AC,BC,分別取AC,BC的中點D,E,測得DE=50m,則AB的長是_______m.12.在比例尺為1∶500000的地圖上,量得A、B兩地的距離為3cm,則A、B兩地的實際距離為_____km.13.用一塊圓心角為120°的扇形鐵皮,圍成一個底面直徑為10cm的圓錐形工件的側面,那么這個圓錐的高是_____cm.14.設,,,設,則S=________________(用含有n的代數(shù)式表示,其中n為正整數(shù)).15.已知平行四邊形中,,且于點,則_____.16.如圖,點A在雙曲線上,點B在雙曲線上,且AB∥x軸,C、D在x軸上,若四邊形ABCD為矩形,則它的面積為.17.如圖,△ABC內接于圓,點D在弧BC上,記∠BAC-∠BCD=α,則圖中等于α的角是_______18.一張矩形的紙片ABCD中,AB=10,AD=8.按如圖方式折,使A點剛好落在CD上。則折痕(陰影部分)面積為_________________.三、解答題(共66分)19.(10分)如圖1,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于點C.(1)求拋物線的解析式及其頂點Q的坐標;(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最小,請在圖中畫出點P的位置,并求點P的坐標;(3)如圖2,若點D是第一象限拋物線上的一個動點,過D作DE⊥x軸,垂足為E.①有一個同學說:“在第一象限拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠,所以當點D運動至點Q時,折線D-E-O的長度最長”,這個同學的說法正確嗎?請說明理由.②若DE與直線BC交于點F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標;若不能,請簡要說明理由.20.(6分)如圖,在?ABCD中,點E是邊AD上一點,延長CE到點F,使∠FBC=∠DCE,且FB與AD相交于點G.(1)求證:∠D=∠F;(2)用直尺和圓規(guī)在邊AD上作出一點P,使△BPC∽△CDP,并加以證明.(作圖要求:保留痕跡,不寫作法.)21.(6分)某商場以每件20元購進一批襯衫,若以每件40元出售,則每天可售出60件,經(jīng)調查發(fā)現(xiàn),如果每件襯衫每漲價1元,商場平均每天可少售出2件,若設每件襯衫漲價元,回答下列問題:(1)該商場每天售出襯衫件(用含的代數(shù)式表示);(2)求的值為多少時,商場平均每天獲利1050元?(3)該商場平均每天獲利(填“能”或“不能”)達到1250元?22.(8分)在△ABC中,∠ACB=90°,BC=kAC,點D在AC上,連接BD.(1)如圖1,當k=1時,BD的延長線垂直于AE,垂足為E,延長BC、AE交于點F.求證:CD=CF;(2)過點C作CG⊥BD,垂足為G,連接AG并延長交BC于點H.①如圖2,若CH=CD,探究線段AG與GH的數(shù)量關系(用含k的代數(shù)式表示),并證明;②如圖3,若點D是AC的中點,直接寫出cos∠CGH的值(用含k的代數(shù)式表示).23.(8分)國務院辦公廳在2015年3月16日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進一步普及足球知識,傳播足球文化,我市某區(qū)在中小學舉行了“足球在身邊”知識競賽,各類獲獎學生人數(shù)的比例情況如圖所示,其中獲得三等獎的學生共50名,請結合圖中信息,解答下列問題:(1)獲得一等獎的學生人數(shù);(2)在本次知識競賽活動中,A,B,C,D四所學校表現(xiàn)突出,現(xiàn)決定從這四所學校中隨機選取兩所學校舉行一場足球友誼賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學校的概率.24.(8分)如圖,拋物線的頂點為,且拋物線與直線相交于兩點,且點在軸上,點的坐標為,連接.(1),,(直接寫出結果);(2)當時,則的取值范圍為(直接寫出結果);(3)在直線下方的拋物線上是否存在一點,使得的面積最大?若存在,求出的最大面積及點坐標.25.(10分)在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC邊上一點,且DA=DB,O是AB的中點,CE是△BCD的中線.(1)如圖a,連接OC,請直接寫出∠OCE和∠OAC的數(shù)量關系:;(2)點M是射線EC上的一個動點,將射線OM繞點O逆時針旋轉得射線ON,使∠MON=∠ADB,ON與射線CA交于點N.①如圖b,猜想并證明線段OM和線段ON之間的數(shù)量關系;②若∠BAC=30°,BC=m,當∠AON=15°時,請直接寫出線段ME的長度(用含m的代數(shù)式表示).26.(10分)空間任意選定一點,以點為端點,作三條互相垂直的射線,,.這三條互相垂直的射線分別稱作軸、軸、軸,統(tǒng)稱為坐標軸,它們的方向分別為(水平向前),(水平向右),(豎直向上)方向,這樣的坐標系稱為空間直角坐標系.將相鄰三個面的面積記為,,,且的小長方體稱為單位長方體,現(xiàn)將若干個單位長方體在空間直角坐標系內進行碼放,要求碼放時將單位長方體所在的面與軸垂直,所在的面與軸垂直,所在的面與軸垂直,如圖1所示.若將軸方向表示的量稱為幾何體碼放的排數(shù),軸方向表示的量稱為幾何體碼放的列數(shù),二軸方向表示的量稱為幾何體碼放的層數(shù);如圖2是由若干個單位長方體在空間直角坐標內碼放的一個幾何體,其中這個幾何體共碼放了排列層,用有序數(shù)組記作,如圖3的幾何體碼放了排列層,用有序數(shù)組記作.這樣我們就可用每一個有序數(shù)組表示一種幾何體的碼放方式.(1)有序數(shù)組所對應的碼放的幾何體是______________;A.B.C.D.(2)圖4是由若干個單位長方體碼放的一個幾何體的三視圖,則這種碼放方式的有序數(shù)組為(______,_______,_______),組成這個幾何體的單位長方體的個數(shù)為____________個.(3)為了進一步探究有序數(shù)組的幾何體的表面積公式,某同學針對若干個單位長方體進行碼放,制作了下列表格:幾何體有序數(shù)組單位長方體的個數(shù)表面上面積為S1的個數(shù)表面上面積為S2的個數(shù)表面上面積為S3的個數(shù)表面積根據(jù)以上規(guī)律,請直接寫出有序數(shù)組的幾何體表面積的計算公式;(用,,,,,表示)(4)當,,時,對由個單位長方體碼放的幾何體進行打包,為了節(jié)約外包裝材料,我們可以對個單位長方體碼放的幾何體表面積最小的規(guī)律進行探究,請你根據(jù)自己探究的結果直接寫出使幾何體表面積最小的有序數(shù)組,這個有序數(shù)組為(______,_______,______),此時求出的這個幾何體表面積的大小為____________(縫隙不計)

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)一元二次方程根的判別式,分別計算△的值,進行判斷即可.【詳解】解:選項A:△=0,方程有兩個相等的實數(shù)根;選項B、△=0-12=-12<0,方程沒有實數(shù)根;選項C、△=4-4×1×(-17)=4+68=72>0,方程有兩個不相等的實數(shù)根;選項D、△=1-4×5=-19<0,方程沒有實數(shù)根.故選:C.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac;當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.2、D【分析】根據(jù)點平移規(guī)律,得到點A平移后的點的坐標為(2,3),由此計算k值.【詳解】∵已知A(-3,3),B(-1,1.5),將線段AB向右平移5個單位長度后,∴點A平移后的點坐標為(2,3),∵點A、B恰好同時落在反比例函數(shù)(x>0)的圖象上,∴,故選:D.【點睛】此題考查點平移的規(guī)律,點沿著x軸左右平移的規(guī)律是:左減右加;點沿著y軸上下平移的規(guī)律是:上加下減,熟記規(guī)律是解題的關鍵.3、B【解析】首先根據(jù)反比例函數(shù)的比例系數(shù)確定圖象的大體位置,然后根據(jù)自變量的取值范圍確定具體位置【詳解】∵比例系數(shù)k<0,∴其圖象位于二、四象限,∵x<0∴反比例函數(shù)的圖象位于第二象限,故選B.【點睛】此題考查反比例函數(shù)的性質,根據(jù)反比例函數(shù)判斷象限是解題關鍵4、B【解析】試題解析:由于圓心A在數(shù)軸上的坐標為3,圓的半徑為2,∴當d=r時,⊙A與數(shù)軸交于兩點:1、5,故當a=1、5時點B在⊙A上;當d<r即當1<a<5時,點B在⊙A內;當d>r即當a<1或a>5時,點B在⊙A外.由以上結論可知選項A、C、D正確,選項B錯誤.故選B.點睛:若用d、r分別表示點到圓心的距離和圓的半徑,則當d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內.5、B【分析】由題意直接根據(jù)事件發(fā)生的可能性大小對各事件進行依次判斷.【詳解】解:①經(jīng)過有交通信號燈的路口,遇到紅燈,是隨機事件;②擲一枚均勻的正方體骰子,骰子落地后朝上的點數(shù)不是奇數(shù)便是偶數(shù),是必然事件;③長為5cm、5cm、11cm的三條線段能圍成一個三角形,是不可能事件;④買一張體育彩票中獎,是隨機事件;故選:B.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.6、B【分析】根據(jù)相似三角形的性質即可得出答案.【詳解】根據(jù)“相似三角形對應高的比等于相似比”可得對應高的比為4:9,故答案選擇B.【點睛】本題考查相似三角形的性質,相似三角形對應邊、對應高、對應中線以及周長比都等于相似比.7、A【分析】根據(jù)拋物線的對稱性質進行解答.【詳解】因為拋物線y=ax2+bx+c的對稱軸是x=?3,點A(-2.2,y1),B(-3.2,y2),所以點B與對稱軸的距離小于點A到對稱軸的距離,所以y1<y2故選:A.【點睛】考查了二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征.解題時,利用了二次函數(shù)圖象的對稱性.8、C【解析】試題分析:由題意畫出圖形,在一個平面內,不在同一條直線上的三點,與D點恰能構成一個平行四邊形,符合這樣條件的點D有3個.故選C.考點:平行四邊形的判定9、C【解析】根據(jù)二次函數(shù)的性質,確定拋物線的對稱軸及開口方向得出函數(shù)的增減性,結合題意確定m值的范圍.【詳解】解:拋物線的對稱軸為直線∵,拋物線開口向下,∴當時,y的值隨x值的增大而增大,∵當時,y的值隨x值的增大而增大,∴,故選:C.【點睛】本題考查了二次函數(shù)的性質,主要利用了二次函數(shù)的增減性,由系數(shù)的符號特征得出函數(shù)性質是解答此題的關鍵.10、B【分析】根據(jù)等邊三角形性質求出AB=BC=AC,∠B=∠C=60°,推出∠BAP=∠DPC,即可證得△ABP∽△PCD,據(jù)此解答即可,.【詳解】∵△ABC是等邊三角形,∴AB=BC=AC,∠B=∠C=60°,∴∠BAP+∠APB=180°﹣60°=120°,∵∠APD=60°,∴∠APB+∠DPC=180°﹣60°=120°,∴∠BAP=∠DPC,即∠B=∠C,∠BAP=∠DPC,∴△ABP∽△PCD;∴∵BP=2,CD=1,∴∴AB=1,∴△ABC的邊長為1.故選:B.【點睛】本題考查了相似三角形的性質和判定,等邊三角形的性質,三角形的內角和定理的應用,關鍵是推出△ABP∽△PCD,主要考查了學生的推理能力和計算能力.二、填空題(每小題3分,共24分)11、1【分析】先判斷出DE是△ABC的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得AB=2DE,問題得解.【詳解】∵點D,E分別是AC,BC的中點,∴DE是△ABC的中位線,∴AB=2DE=2×50=1米.故答案為1.【點睛】本題考查了三角形的中位線平行于第三邊并且等于第三邊的一半,熟記定理并準確識圖是解題的關鍵.12、1【分析】由在比例尺為1:50000的地圖上,量得A、B兩地的圖上距離AB=3cm,根據(jù)比例尺的定義,可求得兩地的實際距離.【詳解】解:∵比例尺為1:500000,量得兩地的距離是3厘米,

∴A、B兩地的實際距離3×500000=100000cm=1km,

故答案為1.【點睛】此題考查了比例尺的性質.注意掌握比例尺的定義,注意單位要統(tǒng)一.13、10【分析】求得圓錐的母線的長利用勾股定理求得圓錐的高即可.【詳解】設圓錐的母線長為l,則=10π,解得:l=15,∴圓錐的高為:=10,故答案為:10.【點睛】考查了圓錐的計算,解題的關鍵是了解圓錐的底面周長等于圓錐的側面扇形的弧長,難度不大.14、【分析】先根據(jù)題目中提供的三個式子,分別計算的值,用含n的式子表示其規(guī)律,再計算S的值即可.【詳解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案為:【點睛】本題為規(guī)律探究問題,難度較大,根據(jù)提供的式子發(fā)現(xiàn)規(guī)律,并表示規(guī)律是解題的關鍵,同時要注意對于式子的理解.15、60°【分析】根據(jù)平行四邊形性質可得,再根據(jù)等腰三角形性質和三角形內角和求出,最后根據(jù)直角三角形兩銳角互余即可解答.【詳解】解:四邊形是平行四邊形,,,∴,,∴,,,故答案為:60°.【點睛】本題考查平行四邊形的判定、等腰三角形的性質、直角三角形的性質等知識,解題的關鍵是利用平行四邊形的性質以及等腰三角形的性質求出,屬于中考??碱}型.16、2【詳解】如圖,過A點作AE⊥y軸,垂足為E,∵點A在雙曲線上,∴四邊形AEOD的面積為1∵點B在雙曲線上,且AB∥x軸,∴四邊形BEOC的面積為3∴四邊形ABCD為矩形,則它的面積為3-1=217、∠DAC【分析】由于∠BAD與∠BCD是同弧所對的圓周角,故∠BAD=∠BCD,故∠BAC-∠BCD=∠BAC-∠BAD,即可得出答案.【詳解】解:∵∠BAD=∠BCD,∴∠BAC-∠BCD=∠BAC-∠BAD=∠DAC,∵∠BAC-∠BCD=α∴∠DAC=α故答案為:∠DAC.【點睛】本題考查了圓周角的性質,掌握同弧所對的圓周角相等是解題的關鍵.18、25【分析】根據(jù)折疊利用方程求出AE的長即可【詳解】設,則∵折疊∴∴∴∴DF=4∴解得∴故答案為25【點睛】本題考查了折疊與勾股定理,利用折疊再結合勾股定理計算是解題關鍵。三、解答題(共66分)19、(1)y-(x-2)2+9,Q(2,9);(2)(2,3);作圖見解析;(3)①不正確,理由見解析;②不能,理由見解析.【分析】(1)將A(-1,0)、B(1,0)分別代入y=-x2+bx+c中即可確定b、c的值,然后配方后即可確定其頂點坐標;(2)連接BC,交對稱軸于點P,連接AP、AC.求得C點的坐標后然后確定直線BC的解析式,最后求得其與x=2與直線BC的交點坐標即為點P的坐標;(3)①設D(t,-t2+4t+1),設折線D-E-O的長度為L,求得L的最大值后與當點D與Q重合時L=9+2=11<相比較即可得到答案;②假設四邊形DCEB為平行四邊形,則可得到EF=DF,CF=BF.然后根據(jù)DE∥y軸求得DF,得到DF>EF,這與EF=DF相矛盾,從而否定是平行四邊形.【詳解】解:(1)將A(-1,0)、B(1,0)分別代入y=-x2+bx+c中,得,解得∴y=-x2+4x+1.∵y=-x2+4x+1=-(x-2)2+9,∴Q(2,9).(2)如圖1,連接BC,交對稱軸于點P,連接AP、AC.∵AC長為定值,∴要使△PAC的周長最小,只需PA+PC最?。唿cA關于對稱軸x=2的對稱點是點B(1,0),拋物線y=-x2+4x+1與y軸交點C的坐標為(0,1).∴由幾何知識可知,PA+PC=PB+PC為最?。O直線BC的解析式為y=kx+1,將B(1,0)代入1k+1=0,得k=-1,∴y=-x+1,∴當x=2時,y=3,∴點P的坐標為(2,3).(3)①這個同學的說法不正確.∵設D(t,-t2+4t+1),設折線D-E-O的長度為L,則L=?t2+4t+1+t=?t2+1t+1=?(t?)2+,∵a<0,∴當t=時,L最大值=.而當點D與Q重合時,L=9+2=11<,∴該該同學的說法不正確.②四邊形DCEB不能為平行四邊形.如圖2,若四邊形DCEB為平行四邊形,則EF=DF,CF=BF.∵DE∥y軸,∴,即OE=BE=2.1.當xF=2.1時,yF=-2.1+1=2.1,即EF=2.1;當xD=2.1時,yD=?(2.1?2)2+9=8.71,即DE=8.71.∴DF=DE-EF=8.71-2.1=6.21>2.1.即DF>EF,這與EF=DF相矛盾,∴四邊形DCEB不能為平行四邊形.【點睛】本題考查二次函數(shù)及四邊形的綜合,難度較大.20、(1)詳見解析;(2)詳見解析.【分析】(1)根據(jù)四邊形ABCD是平行四邊形可得AD∥BC,∠FGE=FBC,再根據(jù)已知∠FBC=∠DCE,進而可得結論;(2)作三角形FBC的外接圓交AD于點P即可證明.【詳解】解:(1)∵四邊形ABCD是平行四邊形,∴AD∥BC∴∠FGE=∠FBC∵∠FBC=∠DCE,∴∠FGE=∠DCE∵∠FEG=∠DEC∴∠D=∠F.(2)如圖所示:點P即為所求作的點.證明:作BC和BF的垂直平分線,交于點O,作△FBC的外接圓,連接BO并延長交AD于點P,∴∠PCB=90°∵AD∥BC∴∠CPD=∠PCB=90°由(1)得∠F=∠D∵∠F=∠BPC∴∠D=∠BPC∴△BPC∽△CDP.【點睛】此題主要考查圓的綜合應用,解題的關鍵是熟知平行四邊形的性質、外接圓的性質及相似三角形的判定與性質.21、(1);(2)當時,商場平均每天獲利1050元;(3)能【分析】(1)根據(jù)題意寫出答案即可.(2)根據(jù)題意列出方程,解出答案即可.(3)令利潤代數(shù)式為1250,解出即可判斷.【詳解】(1)根據(jù)題意:每天可售出60件,如果每件襯衫每漲價1元,商場平均每天可少售出2件,則商場每天售出襯衫:(2)解得,(不符合題意,舍去).答:當時,商場平均每天獲利1050元.(3)根據(jù)題意可得:解得:x=5所以,商場平均每天獲利能達到1250元【點睛】本題考查一元二次方程的應用,關鍵在于理解題意找出等量關系.22、(1)證明見解析;(2)①,證明見解析;②cos∠CGH=.【分析】(1)只要證明△ACF≌△BCD(ASA),即可推出CF=CD.(2)結論:.設CD=5a,CH=2a,利用相似三角形的性質求出AM,再利用平行線分線段成比例定理即可解決問題.(3)如圖3中,設AC=m,則BC=km,m,想辦法證明∠CGH=∠ABC即可解決問題.【詳解】(1)證明:如圖1中,∵∠ACB=90°,BE⊥AF∴∠ACB=∠ACF=∠AEB=90°∵∠ADE+∠EAD=∠BDC+∠DBC=90°,∠ADE=∠BDC,∴∠CAF=∠DBC,∵BC=AC,∴△ACF≌△BCD(ASA),∴CF=CD.(2)解:結論:.理由:如圖2中,作AM⊥AC交CG的延長線于M.∵CG⊥BD,MA⊥AC,∴∠CAM=∠CGD=∠BCD=90°,∴∠ACM+∠CDG=90°,∠ACM+∠M=90°,∴∠CDB=∠M,∴△BCD∽△CAM,∴=k,∵CH=CD,設CD=5a,CH=2a,∴AM=,∵AM∥CH,∴,∴.(3)解:如圖3中,設AC=m,則BC=km,m,∵∠DCB=90°,CG⊥BD,∴△DCG∽△DBC,∴DC2=DG?DB,∵AD=DC,∴AD2=DG?DB,∴,∵∠ADG=∠BDA,∴△ADG∽△BDA,∴∠DAG=∠DBA,∵∠AGD=∠GAB+∠DBA=∠GAB+∠DAG=∠CAB,∵∠AGD+∠CGH=90°,∠CAB+∠ABC=90°,∴∠CGH=∠ABC,∴.【點睛】本題為四邊形綜合探究題,考查相似三角形、三角函數(shù)等知識,解題時注意相似三角形的性質和平行線分線段成比例定理的應用.23、(1)30人;(2).【解析】試題分析:(1)先由三等獎求出總人數(shù),再求出一等獎人數(shù)所占的比例,即可得到獲得一等獎的學生人數(shù);(2)用列表法求出概率.試題解析:(1)由圖可知三等獎占總的25%,總人數(shù)為人,一等獎占,所以,一等獎的學生為人;(2)列表:從表中我們可以看到總的有12種情況,而AB分到一組的情況有2種,故總的情況為.考點:1.扇形統(tǒng)計圖;2.列表法與樹狀圖法.24、(1)1,-1,1;(2);(3)最大值為,點.【分析】(1)將代入求得k值,求得點A的坐標,再將A、B的坐標代入即可求得答案;(2)在圖象上找出拋物線在直線下方自變量的取值范圍即可;(3)設點P的坐標為,則點Q的坐標為,求得的長,利用三角形面積公式得到,然后根據(jù)二次函數(shù)的性質即可解決問題.【詳解】(1)∵直線經(jīng)過點,∴,解得:,∵直線與x軸交于點A,令,則,點A的坐標為,∵拋物線與直線相交于兩點,∴,解得:,故答案為:,,;(2)∵拋物線與直線相交于A,兩點,觀察圖象,拋物線在直線下方時,,∴當時,則的取值范圍為:,故答案為:;(3)過點P作y軸的平行線交直線于點Q,設點P的坐標為,則點Q的坐標為,∴,,∴,當時,的面積有最大值為,此時P點坐標為;故答案為:面積有最大值為,P點坐標為;【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質;會利用待定系數(shù)法求函數(shù)解析式;理解坐標與圖形性質,記住兩點間的距離公式;會運用數(shù)形結合的思想解決數(shù)學問題.25、(1)∠ECO=∠OAC;(2)①OM=ON,理由見解析,②EM的值為m+m或m﹣m【分析】(1)結論:∠ECO=∠OAC.理由直角三角形斜邊中線定理,三角形的中位線定理解決問題即可.(2)①只要證明△COM≌△AON(ASA),即可解決問題.②分兩種情形:如圖3﹣1中,當點N在CA的延長線上時,如圖3﹣2中,當點N在線段AC上時,作OH⊥AC于H.分別求解即可解決問題.【詳解】解:(1)結論:∠ECO=∠OAC.理由:如圖1中,連接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案為:∠OCE=∠OAC.(2)如圖2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論