




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
部編人教版八年級(jí)上冊(cè)數(shù)學(xué)全冊(cè)教學(xué)課件新人教版-八年級(jí)(上)數(shù)學(xué)-第十一章11.1.1三角形的邊一、學(xué)習(xí)目標(biāo)1、通過具體實(shí)例,進(jìn)一步認(rèn)識(shí)三角形的概念及其基本要素;2、學(xué)會(huì)三角形的表示及掌握對(duì)邊與對(duì)角的關(guān)系;3、掌握三角形三邊之間的關(guān)系;重點(diǎn):了解三角形定義,三邊之間關(guān)系.難點(diǎn):理解“首尾相連”等關(guān)鍵語句.二、重點(diǎn)和難點(diǎn)生活常識(shí)看一看生活常識(shí)
看一看生活常識(shí)在我們的生活中幾乎隨處可見三角形。它簡單,有趣,也十分有用。三角形可以幫助我們更好認(rèn)識(shí)周圍世界,解決很多的實(shí)際問題。那什么樣的圖形是三角形呢?想一想
由不在同一條直線上的三條線段首尾順次相接組成的圖形,稱為三角形.不在同一條直線上首尾順次相接一、三角形的定義組成三角形的三條線段叫做三角形的邊。如圖,三角形ABC有幾條邊?它們分別是__________________ABC△ABC的三邊,有時(shí)也用a、b、c來表示.abc二、三角形的要素—邊BC、AC、AB三角形相鄰兩邊的公共端點(diǎn)叫做三角形的頂點(diǎn)。如圖,三角形ABC有幾個(gè)頂點(diǎn)?它們分別是_________________ABC三角形的形狀、大小和位置由它的三個(gè)頂點(diǎn)確定。三、三角形的要素—頂點(diǎn)點(diǎn)A、B、CBCA三角形相鄰兩邊所組成的角叫做三角形的內(nèi)角。簡稱三角形的角。如圖,三角形ABC有幾個(gè)內(nèi)角?它們分是什么?四、三角形的要素—內(nèi)角∠A、∠B、∠CBCA在?ABC中,AB邊所對(duì)的角是:∠A所對(duì)的邊是:∠CBC再說幾個(gè)對(duì)邊與對(duì)角的關(guān)系試試。三角形的對(duì)邊與對(duì)角ABC記法三角形符號(hào)“△”,如:上圖的三角形記作:△ABC
(或△BCA或△CBA
等)我的姓是“△”我的名字是:三個(gè)頂點(diǎn)字母“A、B、C”注意:表示三角形時(shí),字母沒有先后順序,但通常按逆時(shí)針來排列.三角形的表示法ADBEC1.圖中共有
個(gè)三角形,它們分別是:__________________________5△ABE,△ABC,△BCE,△BCD,△CDE小結(jié):數(shù)三角形的個(gè)數(shù)時(shí),抓住不在同一條直線上的三個(gè)點(diǎn)能組成一個(gè)三角形;再按字母的順序去數(shù).練習(xí)一ADCBE2.以AB為邊的三角形有哪些?△ABC、△ABE3.以E為頂點(diǎn)的三角形有哪些?△ABE、△BCE、△CDE4.以∠D為角的三角形有哪些?△BCD、△DEC練習(xí)二ABCDE5.△BCD的三邊分別是:___________________三個(gè)角分別是:______________________三個(gè)頂點(diǎn)分別是:________________其中頂點(diǎn)C的對(duì)邊是:_________∠D是由_____和______兩邊組成的內(nèi)角∠BEC是△BCD的內(nèi)角嗎?BC,CD,DB∠DBC、∠BCD、∠CDB點(diǎn)D、B、CDBDBDC不是練習(xí)三觀察三角形按角可分為:直角三角形銳角三角形鈍角三角形三角形按邊可分為:三邊各不相等的三角形腰與底邊不相等的等腰三角形腰與底邊相等的等腰三角形再觀察等腰三角形角的分類兩點(diǎn)之間的所有連線中,線段最短
在A點(diǎn)的小狗,為了盡快吃到B點(diǎn)的香腸,它選擇A
B路線,而不選擇A
C
B路線,難道小狗也懂?dāng)?shù)學(xué)?CBA談?wù)勀愕南敕ǎ≌?qǐng)拿出準(zhǔn)備好的長度分別為:5cm,6cm,11cm,12cm的紙條各一根,從中任取三根看能不能擺成一個(gè)三角形?從4根中取出3根有以下幾種情況:(1)5cm,6cm,11cm通過動(dòng)手發(fā)現(xiàn):(3)(4)可以擺成三角形,
(1)(2)不能擺成三角形。(2)5cm,6cm,12cm(3)5cm,11cm,12cm(4)6cm,11cm,12cm通過實(shí)驗(yàn)?zāi)隳馨l(fā)現(xiàn):構(gòu)成一個(gè)三角形的三邊有什么規(guī)律?動(dòng)手試一試●●●ABCAC+CB>ABCB+AB>ACAB+AC>CBAB-CB<ACAC-AB<CBCB-AC<AB三角形任何兩邊之和大于第三邊兩點(diǎn)之間的所有連線中,線段最短三角形三邊的關(guān)系A(chǔ)BCacb三角形三邊的關(guān)系三角形任意兩邊的和大于第三邊三角形任意兩邊的差小于第三邊a-b<cb-c<ac-a<bb+c>aa+c>ba+b>c下列長度的各組線段能否組成一個(gè)三角形?(1)15cm、10cm、7cm(2)4cm、5cm、10cm(3)3cm、8cm、5cm(2)因?yàn)?cm+5cm<10cm,所以這三條線段不能組成一個(gè)三角形.(3)因?yàn)?cm+5cm=8cm,所以這三條線段不能組成一個(gè)三角形.(1)因?yàn)?0cm+7cm>15cm,所以這三條線段能組成一個(gè)三角形.解:(4)因?yàn)?x+2)cm+(x+4)cm>(x+5)cm,所以這三條線段能組成一個(gè)三角形.(4)(x+5)cm,(x+4)cm,(x+2)cm[x為正數(shù)]鞏固新知拓展應(yīng)用較小兩邊之和大于第三邊,才能構(gòu)成三角形結(jié)論:只要滿足較小的兩條線段之和大于第三條線段,便可構(gòu)成三角形;若不滿足,則不能構(gòu)成三角形.構(gòu)成三角形的條件1.張老師想制作一個(gè)三角形木架,現(xiàn)有兩根長度為19cm和9cm的木棒,第三根的長度X的取值范圍是多少?10㎝<x<28㎝練習(xí)1已知三角形兩邊的長度,第三邊長度范圍是:如果告訴你:三角形兩邊的長度,第三邊長度的范圍你能確定嗎?大于這兩邊的差,小于這兩邊的和。三角形三邊的關(guān)系2.張老師想制作一個(gè)三角形木架,現(xiàn)有兩根長度為19cm和9cm的木棒,如果要求第三根木棒的長度是偶數(shù),你有幾種選法?第三根的長度可以是多少?有8種選法。第三根木棒的長度可以是:12cm,14cm,16cm,18cm,20cm,22cm,24cm,26cm練習(xí)23.張老師想制作一個(gè)三角形木架,現(xiàn)有兩根長度為19cm和9cm的木棒,如果要求第三根木棒的長度是奇數(shù),我有幾種選法?第三根的長度可以是多少?有8種選法。第三根木棒的長度可以是:11cm,13cm,15cm,17cm19cm,21cm,23cm,25cm練習(xí)34.張老師想制作一個(gè)等腰三角形木架,現(xiàn)有兩根長度為19cm和8cm的木棒,我有幾種選法?第三根的長度可以是多少?三角形的周長是多少?第三根木棒的長度可以是:19cm三角形的周長是46cm練習(xí)45.張老師想制作一個(gè)等腰三角形木架,現(xiàn)有兩根長度為19cm和10cm的木棒,我有幾種選法?第三根的長度可以是多少?三角形的周長是多少?第三根木棒的長度可以是:19cm,10cm三角形的周長是:48cm,39cm練習(xí)5他一步能走3米,不可能ABC答:不能.如果此人一步能走3米多,由三角形三邊的關(guān)系得,此人兩腿長的和得大于3米多,這與實(shí)際情況相矛盾,所以它一步不能走3米多.你相信嗎?人行橫道你能用數(shù)學(xué)知識(shí)解釋嗎為什么經(jīng)常有些行人斜穿馬路而不走人行橫道或兩點(diǎn)之間的所有連線中,線段最短三角形任意兩邊之和大于第三邊。AB理由:C.學(xué)以致用小晶有兩根長度為5cm、8cm的木條,她想釘一個(gè)三角形的木框,現(xiàn)在有長度分別為2cm
、3cm、8cm
、15cm的木條供她選擇,那她第三根應(yīng)選擇?()A、2cmB、3cmC、8cmD、15cm
分析:
∵
第三根可選擇的范圍是:大于8-5=3(cm)小于8+5=13(cm)∴只有8cm的木條能釘成三角形木框,所以答案選C.解題技巧:三角形第三邊的取值范圍是:兩邊之差<第三邊<兩邊之和你能幫助他嗎?C小明有兩根長為10cm和3cm的木條,他要釘一個(gè)三角形像框,并且使所選擇的第三根木條長度是6的整數(shù)倍.聰明的你幫他想想,第三根木條應(yīng)取多長?解:三角形像框第三邊的取值范圍是:∵兩邊之差<第三邊<兩邊之和即10-3<x<10+3(7<x<13)符合條件的數(shù)是12∴第三根木條應(yīng)取12cm方法與拓展三角形有基本要素邊基本要素角頂點(diǎn)ABC(AB、BC、CA)(∠A、∠B、∠C)(A、B、C)如上面的三角形ABC記作:三角形的表示:(用符號(hào)“△”表示)△ABCbca三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形.小結(jié)1、三角形的三邊關(guān)系的性質(zhì):(1)判斷三條已知線段能否組成三角形時(shí),采用一種較為簡便的判法:若最短邊與較長邊的和大于最長邊,則可構(gòu)成三角形,否則不能.2、(2)確定三角形第三邊的取值范圍:三角形的任何兩邊的和大于第三邊。小結(jié)兩邊之差<第三邊<兩邊之和學(xué)生課堂行為規(guī)范的內(nèi)容是:按時(shí)上課,不得無故缺課、遲到、早退。遵守課堂禮儀,與老師問候。上課時(shí)衣著要整潔,不得穿無袖背心、吊帶上衣、超短裙、拖鞋等進(jìn)入教室。尊敬老師,服從任課老師管理。不做與課堂教學(xué)無關(guān)的事,保持課堂良好紀(jì)律秩序。聽課時(shí)有問題,應(yīng)先舉手,經(jīng)教師同意后,起立提問。上課期間離開教室須經(jīng)老師允許后方可離開。上課必須按座位表就坐。要愛護(hù)公共財(cái)物,不得在課桌、門窗、墻壁上涂寫、刻劃。要注意保持教室環(huán)境衛(wèi)生。離開教室要整理好桌椅,并協(xié)助老師關(guān)好門窗、關(guān)閉電源。謝謝大家新人教版-八年級(jí)(上)數(shù)學(xué)-第十一章11.1.2三角形的高、中線與角平分線1.理解三角形的高、中線和角平分線的含義,并會(huì)作出這三種重要的線段。2.了解三角形的高、中線、和角平分線的性質(zhì),并能應(yīng)用它解決一些問題。3.感受數(shù)學(xué)知識(shí)的廣泛用途和科學(xué)探究精神。重點(diǎn):三角形的高、中線和角平分線的定義。難點(diǎn):掌握各種線在三角形中分得的角和線段之間的倍分關(guān)系。學(xué)習(xí)目標(biāo):回顧與思考你還記得“過一點(diǎn)畫已知直線的垂線”嗎?畫法過三角形的一個(gè)頂點(diǎn),你能畫出它到對(duì)邊的垂線段嗎?BACA從三角形的一個(gè)頂點(diǎn)BC向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足D之間的線段叫做三角形這邊上的高,簡稱三角形的高。如圖,線段AD是BC邊上的高.任意畫一個(gè)銳角△ABC,垂直的記號(hào)和垂足的字母請(qǐng)你畫出BC邊上的高.注意!標(biāo)明D三角形的高從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在的直線作垂線,頂點(diǎn)和垂足之間的線段叫做三角形的高。AD⊥BC,則AD是△ABC的BC邊上的高AD是△ABC的BC邊上的高,則AD⊥BC,∠ADB=900三角形的高的理解銳角三角形的三條高(1)你能畫出這個(gè)三角形的三條高嗎?(2)這三條高之間有怎樣的位置關(guān)系?銳角三角形的三條高交于同一點(diǎn).O(3)銳角三角形的三條高是在三角形的內(nèi)部還是外部?銳角三角形的三條高都在三角形的內(nèi)部。ABCDEF直角三角形的三條高ABC(1)畫出直角三角形的三條高,直角邊BC邊上的高是
;AB直角邊AB邊上的高是
;CB它們有怎樣的位置關(guān)系?直角三角形的三條高交于直角頂點(diǎn).D斜邊AC邊上的高是
;BD●鈍角三角形的三條高ABCDEF(1)鈍角三角形的三條高交于一點(diǎn)嗎?鈍角三角形的三條高不相交于一點(diǎn)它們所在的直線交于一點(diǎn)嗎?鈍角三角形的三條高所在直線交于一點(diǎn)O小結(jié):三角形的高從三角形中的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足之間的線段
叫做三角形這邊的高。三角形的三條高的特性:高所在的直線是否相交高之間是否相交高在三角形內(nèi)部的數(shù)量鈍角三角形直角三角形銳角三角形311相交相交不相交相交相交相交三角形的三條高所在直線交于一點(diǎn)三條高所在直線的交點(diǎn)的位置三角形內(nèi)部直角頂點(diǎn)三角形外部2、如果一個(gè)三角形的三條高的交點(diǎn)恰是三角形的一個(gè)頂點(diǎn),那么這個(gè)三角形是()A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定1.下列各組圖形中,哪一組圖形中AD是△ABC
的高()ADCBABCDABCDABCD(A)(B)(C)(D)BD拓展與練習(xí)在三角形中,連接一個(gè)頂點(diǎn)與它對(duì)邊中點(diǎn)的線段,叫做這個(gè)三角形這邊的中線.ABCD∵AD是△ABC的中線∴BD=CD=
12BC任意畫一個(gè)三角形,然后利用刻度尺畫出這個(gè)三角形三條邊的中線,你發(fā)現(xiàn)了什么?●●三角形的三條中線相交于一點(diǎn),交點(diǎn)在三角形的內(nèi)部.三角形中線的理解EFO三角形的中線也就是說:三角形的任意一條中線把這個(gè)三角形分成了兩個(gè)面積相等的三角形。EABCD如右圖∵D是BC的中點(diǎn)∴BD=DC而△ABD的面積=BD×AE△ADC的面積=DC×AE故△ABD的面積=△ADC的面積例1:如圖,在△ABC中,AD,AE分別是BC邊上的中線和高.試判斷△ABD和△ADC的面積有何關(guān)系?中線的性質(zhì)②三角形的中線是一條線段。①任何三角形有三條中線,并且都在三角形的內(nèi)部,交與一點(diǎn)。③三角形的任意一條中線把這個(gè)三角形分成了兩個(gè)面積相等的三角形。三角形中線的特點(diǎn)叫做三角形的角平分線。ABCD∵AD是△ABC的角平分線∴∠BAD=∠CAD=12∠BAC任意畫一個(gè)三角形,然后利用量角器畫出這個(gè)三角形三個(gè)角的角平分線,你發(fā)現(xiàn)了什么?●●在三角形中,一個(gè)內(nèi)角的角平分線與它的對(duì)邊相交,這個(gè)角的頂點(diǎn)與交點(diǎn)之間的線段,三角形的三條角平分線相交于一點(diǎn),交點(diǎn)在三角形的內(nèi)部︶︶12三角形的角平分線角平分線的理解∵BE是△ABC的角平分線∴_______=_______=____∴∠ACB=2______=2______∠ABE∠CBE∠ABC∠ACF∵CF是△ABC的角平分線∠BCF思考三角形的角平分線是一條線段,角的平分線是一條射線。三角形的角平分線與角的平分線有什么區(qū)別?例2:如圖,已知:△ABC中,BD、CE分別是△ABC的兩條角平分線,相交于點(diǎn)O.(1)當(dāng)∠ABC=60°,∠ACB=80°時(shí),求∠BOC的度數(shù)例題講解解:∵BD、CE分別是△ABC的角平分線例2:如圖,已知:△ABC中,BD、CE分別是△ABC的兩條角平分線,相交于點(diǎn)O.(2)當(dāng)∠A=40°時(shí),求∠BOC的度數(shù)例題講解解:∵BD、CE分別是△ABC的角平分線例2:如圖,已知:△ABC中,BD、CE分別是△ABC的兩條角平分線,相交于點(diǎn)O.(3)當(dāng)∠A=x°時(shí),求∠BOC的度數(shù)(用含x代數(shù)式表示)例題講解解:∵BD、CE分別是△ABC的角平分線名稱基本圖形畫法性質(zhì)高用邊的垂線三角板畫頂點(diǎn)到對(duì)段三條高線相交于三角形內(nèi)部、外部或邊上一點(diǎn)中線用直尺畫兩點(diǎn)之間的線段三條中線相交于三角形內(nèi)一點(diǎn),且把三角形分成面積相等的兩部分角平分線利用量角器畫角的平分線的一部分三條角平分線相交于三角形內(nèi)一點(diǎn)DACBDACBDACB高、中線與角平分線的比較如圖,在⊿ABC中,∠1=∠2,G為AD中點(diǎn),延長BG交AC于E,F為AB上一點(diǎn),CF⊥AD于H,判斷下列說法那些是正確的,哪些是錯(cuò)誤的.⌒⌒ABCDE12FGH①AD是⊿ABE的角平分線()②BE是⊿ABD邊AD上的中線()③BE是⊿ABC邊AC上的中線()④CH是⊿ACD邊AD上的高()三角形的高、中線與角平分線都是線段×××√拓展練習(xí)小結(jié)三角形的角平分線、中線、高線的比較相同點(diǎn):(1)都是線段(2)都從頂點(diǎn)畫出(3)所在直線都相交于一點(diǎn)不同點(diǎn):角平分線反映的是角的相等關(guān)系中線反映的是線段的相等關(guān)系高線反映的是它和對(duì)邊或?qū)吽谥本€的垂直關(guān)系學(xué)生課堂行為規(guī)范的內(nèi)容是:按時(shí)上課,不得無故缺課、遲到、早退。遵守課堂禮儀,與老師問候。上課時(shí)衣著要整潔,不得穿無袖背心、吊帶上衣、超短裙、拖鞋等進(jìn)入教室。尊敬老師,服從任課老師管理。不做與課堂教學(xué)無關(guān)的事,保持課堂良好紀(jì)律秩序。聽課時(shí)有問題,應(yīng)先舉手,經(jīng)教師同意后,起立提問。上課期間離開教室須經(jīng)老師允許后方可離開。上課必須按座位表就坐。要愛護(hù)公共財(cái)物,不得在課桌、門窗、墻壁上涂寫、刻劃。要注意保持教室環(huán)境衛(wèi)生。離開教室要整理好桌椅,并協(xié)助老師關(guān)好門窗、關(guān)閉電源。謝謝大家新人教版-八年級(jí)(上)數(shù)學(xué)-第十一章11.1.3三角形的穩(wěn)定性一、學(xué)習(xí)目標(biāo)1、了解三角形具有穩(wěn)定性;2、學(xué)會(huì)利用三角形的穩(wěn)定性解析一些實(shí)際問題;3、掌握三角形穩(wěn)定性的意義;重點(diǎn):了解三角形穩(wěn)定性.難點(diǎn):利用穩(wěn)定性解析一些實(shí)際問題.二、重點(diǎn)和難點(diǎn)生活小常識(shí)探索與思考(1)將三根不條用釘子釘成一個(gè)三角形木架,然后扭動(dòng)它,它的形狀會(huì)改變嗎?(2)將四根不條用釘子釘成一個(gè)四邊形木架,然后扭動(dòng)它,它的形狀會(huì)改變嗎?(3)在四邊形木架上再釘一根木條,將它的一對(duì)頂點(diǎn)連接起來,然后再扭動(dòng)它,它的形狀會(huì)改變嗎?三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性結(jié)論三角形木架的形狀不會(huì)改變,而四邊形木架的形狀會(huì)改變.用三根木棒釘一個(gè)三角形,你會(huì)發(fā)現(xiàn)再也無法改變這個(gè)三角形的形狀和大小,也就是說,如果一個(gè)三角形的三條邊固定了,那么三角形的形狀和大小就完全確定了.在數(shù)學(xué)上把三角形的這個(gè)性質(zhì)叫做三角形的穩(wěn)定性.三角形的穩(wěn)定性在生活中有廣泛的應(yīng)用,你能舉出一些例子嗎?三角形的性質(zhì)---三角形的穩(wěn)定性四邊形不具有穩(wěn)定性,人們往往通過改造,將其變成三角形從而增強(qiáng)其穩(wěn)定性三角形的穩(wěn)定性的應(yīng)用三角形的穩(wěn)定性的應(yīng)用三角形的穩(wěn)定性的應(yīng)用三角形的穩(wěn)定性的應(yīng)用三角形的穩(wěn)定性的應(yīng)用房屋的人字架三角形的穩(wěn)定性的應(yīng)用照相機(jī)的三腳架三角形的穩(wěn)定性的應(yīng)用自行車三腳架三角形的穩(wěn)定性的應(yīng)用固定樹的兩根支撐四邊形的不穩(wěn)定性有廣泛的應(yīng)用用來制作防盜門、防盜窗等具有穩(wěn)定性不具有穩(wěn)定性不具有穩(wěn)定性具有穩(wěn)定性具有穩(wěn)定性不具有穩(wěn)定性練習(xí)1下列圖形中哪些具有穩(wěn)定性下列圖中具有穩(wěn)定性有()A1個(gè)B2個(gè)C3個(gè)D4個(gè)C練習(xí)2下列關(guān)于三角形穩(wěn)定性和四邊形不穩(wěn)定性的說法正確的是()A、穩(wěn)定性總是有益的,而不穩(wěn)定性總是有害的B、穩(wěn)定性有利用價(jià)值,而不穩(wěn)定性沒有利用價(jià)值C、穩(wěn)定性和不穩(wěn)定性均有利用價(jià)值D、以上說法都不對(duì)C練習(xí)3解:要使四邊形木架不變形,至少要再釘上1根木條;要使五邊形木架不變形,至少要再釘上2根木條;要使六邊形木架不變形,至少要再釘上3根木條;要使n邊形木架不變形,至少要再釘上(n-3)根木條;n邊形呢?拓展題1四邊形五邊形六邊形…4-35-36-3如圖,當(dāng)四邊形內(nèi)部有1個(gè)點(diǎn)時(shí),把四邊形分成的三角形數(shù)目為4,當(dāng)四邊形內(nèi)部有2個(gè)點(diǎn)時(shí),把四邊形分成的三角形的數(shù)目為6(1)當(dāng)四邊形內(nèi)部有3個(gè)點(diǎn)時(shí),三角形的數(shù)目為___(2)當(dāng)四邊形內(nèi)部有4個(gè)點(diǎn)時(shí),三角形的數(shù)目為___(3)當(dāng)四邊形內(nèi)部有n個(gè)點(diǎn)時(shí),三角形的數(shù)目為_____8102n+2拓展題2486如圖,當(dāng)四邊形內(nèi)部有1個(gè)點(diǎn)時(shí),把四邊形分成的三角形數(shù)目為4,當(dāng)四邊形內(nèi)部有2個(gè)點(diǎn)時(shí),把四邊形分成的三角形的數(shù)目為6(4)三角形的數(shù)目能否為2006?若能,請(qǐng)求出此時(shí)四邊形內(nèi)部的個(gè)數(shù);若不能,請(qǐng)說明理由.解:2n+2=20062n=2004n=1002即三角形的數(shù)目能為2006,此時(shí)四邊形內(nèi)部點(diǎn)的個(gè)數(shù)是1002拓展題2三角形與四邊形的不同小結(jié)(1)三角形有三條邊、三個(gè)角;而四邊形有四條邊、四個(gè)角;(2)三角形具有穩(wěn)定性,而四邊形不具有穩(wěn)定性(3)三角形的三個(gè)內(nèi)角和為180°,而四邊形的四個(gè)內(nèi)角和是360°學(xué)生課堂行為規(guī)范的內(nèi)容是:按時(shí)上課,不得無故缺課、遲到、早退。遵守課堂禮儀,與老師問候。上課時(shí)衣著要整潔,不得穿無袖背心、吊帶上衣、超短裙、拖鞋等進(jìn)入教室。尊敬老師,服從任課老師管理。不做與課堂教學(xué)無關(guān)的事,保持課堂良好紀(jì)律秩序。聽課時(shí)有問題,應(yīng)先舉手,經(jīng)教師同意后,起立提問。上課期間離開教室須經(jīng)老師允許后方可離開。上課必須按座位表就坐。要愛護(hù)公共財(cái)物,不得在課桌、門窗、墻壁上涂寫、刻劃。要注意保持教室環(huán)境衛(wèi)生。離開教室要整理好桌椅,并協(xié)助老師關(guān)好門窗、關(guān)閉電源。謝謝大家新人教版-八年級(jí)(上)-數(shù)學(xué)-第十一章11.2.1三角形的內(nèi)角學(xué)習(xí)目標(biāo):重點(diǎn):難點(diǎn):1、會(huì)闡述三角形內(nèi)角和定理。2、會(huì)應(yīng)用三角形內(nèi)角和定理進(jìn)行計(jì)算;(求三角形的角的度數(shù))3、能通過動(dòng)手實(shí)踐去驗(yàn)證三角形的內(nèi)角和定理。1、能用多種方法證明三角形內(nèi)角和定理2、會(huì)在證明中添加合適的輔助線。通過對(duì)三角形內(nèi)角和定理內(nèi)容的學(xué)習(xí),會(huì)利用它解決生活實(shí)際中一些簡單的有關(guān)角度計(jì)算的問題。三角形兩邊的夾角叫做三角形的內(nèi)角三角形的內(nèi)角在一個(gè)直角三角形里住著三個(gè)內(nèi)角,平時(shí),它們?nèi)值芊浅F(tuán)結(jié)??墒怯幸惶?,老二突然不高興,發(fā)起脾氣來,它指著老大說:“你憑什么度數(shù)最大,我也要和你一樣大!”“不行?。 崩洗笳f:“這是不可能的,否則,我們這個(gè)家就再也圍不起來了……”“為什么?”老二很納悶。同學(xué)們,你們知道其中的道理嗎?內(nèi)角三兄弟之爭如下圖所示是我們常用的三角板,它們的三個(gè)角之和為多少度?想一想:任意三角形的三個(gè)內(nèi)角之和也為180度嗎?30+60+90=18045+45+90=180思考與探索三角形的三個(gè)內(nèi)角和是多少?把三個(gè)角拼在一起試試看?你有什么辦法可以驗(yàn)證呢?從剛才拼角的過程你能想出證明的辦法嗎?180°實(shí)踐操作21EDCBA三角形的內(nèi)角和等于1800.延長BC到D,于是CE∥BA(內(nèi)錯(cuò)角相等,兩直線平行).∴∠B=∠2(兩直線平行,同位角相等).∵∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=180°在△ABC的外部,以CA為一邊,CE為另一邊作∠1=∠A,證法一21EDCBA三角形的內(nèi)角和等于1800.延長BC到D,過C作CE∥BA,∴∠A=∠1(兩直線平行,內(nèi)錯(cuò)角相等)∠B=∠2(兩直線平行,同位角相等)∵∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=180°證法二F21ECBA三角形的內(nèi)角和等于1800.過A作EF∥BC,∴∠B=∠2(兩直線平行,內(nèi)錯(cuò)角相等)∠C=∠1(兩直線平行,內(nèi)錯(cuò)角相等)∵∠2+∠1+∠BAC=180°∴∠B+∠C+∠BAC=180°證法三CBEA三角形的內(nèi)角和等于1800.過A作AE∥BC,∴∠B=∠BAE(兩直線平行,內(nèi)錯(cuò)角相等)∠EAB+∠BAC+∠C=180°(兩直線平行,同旁內(nèi)角互補(bǔ))∴∠B+∠C+∠BAC=180°證法四
在這里,為了證明的需要,在原來的圖形上添畫的線叫做輔助線。在平面幾何里,輔助線通常畫成虛線。
為了證明三個(gè)角的和為1800,轉(zhuǎn)化為一個(gè)平角或同旁內(nèi)角互補(bǔ),這種轉(zhuǎn)化思想是數(shù)學(xué)中的常用方法.思路總結(jié)(口答)下列各組角是同一個(gè)三角形的內(nèi)角嗎?為什么?(2)60°,40°,90°(3)30°,60°,50°(1)3°,150°,27°
(是)(不是)(不是)鞏固練習(xí)(1)在△ABC中,∠A=35°,∠B=43°
則∠C=.(2)在△ABC中,∠A:∠B:∠C=2:3:4則∠A=
∠B=
∠C=.
(3)一個(gè)三角形中最多有
個(gè)直角?為什么?(4)一個(gè)三角形中最多有
個(gè)鈍角?為什么?(5)一個(gè)三角形中至少有
個(gè)銳角?為什么?(6)任意一個(gè)三角形中,最大的一個(gè)角的度數(shù)至少為
.102°80°60°40°60°211應(yīng)用新知ABC已知△ABC中,∠ABC=∠C=2∠A,BD是AC邊上的高,求∠DBC的度數(shù)。D解:設(shè)∠A=x0,則∠ABC=∠C=2x0∴x+2x+2x=180(三角形內(nèi)角和定理)解得x=36∴∠C=2×360=720∴∠DBC=1800-900-720(三角形內(nèi)角和定理)在△BDC中,∵∠BDC=900(三角形高的定義)∴∠DBC=180?例題講解1如圖,C島在A島的北偏東50°方向,B島在A島的北偏東80°方向,C島在B島的北偏西40°方向。求下面各題.(1)∠DAC=_____∠DAB=______∠EBC=_______∠CAB=______A(2)從C島看A、B兩島的視角∠C是多少?50°80°40°DBCE北北解:∵AD∥BE∴∠DAB﹢∠ABE=180°∴∠ABE
=180°-∠DAB
=180°-80°=100°
在△ABC中,∠C
=180°-∠CAB-∠ABC=180°-30°-60°=90°∴
∠ABC=∠ABE﹣∠CBE30°=100°﹣40°=60°例題講解2DCE北A50°∟B40°北MN在△AMC中∠AMC=90°,∠MAC=50°解:過點(diǎn)C畫MN⊥AD分別交AD、BE于點(diǎn)M、N12例:如圖,C島在A島的北偏東50°方向,B島在A島的北偏東80°方向,C島在B島的北偏西40°方向?!唷?=180°-90°-50°=40°∵AD∥BE∴∠AMC+∠BNC=180°∴∠BNC=90°同理得∠2=50°∴∠ACB=180°-∠1-∠2=180°-40°-50°=90°例題講解2BDCE北A
你能想出一個(gè)更簡捷的方法來求∠C的度數(shù)嗎?1250°40°解:過點(diǎn)C畫CF∥AD∴∠1=∠DAC=50°,F∵CF∥AD,又AD∥BE∴CF∥BE∴∠2=∠CBE=40°∴∠ACB=∠1﹢∠2=50°﹢40°=90°例題講解2解:在△ACD中∠CAD=30°∠D=90°DABC∴∠ACD=180°-30°-90°=60°在△BCD中∠CBD=45°∠D=90°∴∠BCD=180°-90°-45°=45°∴∠ACB=∠ACD-∠BCD=60°-45°鞏固練習(xí)1.如圖,從A處觀測C處時(shí)仰角∠CAD=30°,從B處觀測C處時(shí)仰角∠CBD=45°.從C處觀測A、B兩處時(shí)視角∠ACB是多少?2.如圖,某同學(xué)把一塊三角形的玻璃打碎成三片,現(xiàn)在他要到玻璃店去配一塊形狀完全一樣的玻璃,那么最省事的辦法是()(A)帶①去(B)帶②去(C)帶③去(D)帶①和②去C鞏固練習(xí)3.△ABC中,若∠A+∠B=∠C,則△ABC是()A、銳角三角形B、直角三角形C、鈍角三角形D、等腰三角形4.一個(gè)三角形至少有()
A、一個(gè)銳角B、兩個(gè)銳角
C、一個(gè)鈍角D、一個(gè)直角BB鞏固練習(xí)5.如圖△ABC中,CD平分∠ACB,DE∥BC,∠A=70°,∠ADE=50°,求∠BDC的度數(shù).ABCDE解:∵∠A=70°∴∠ACB=180°-∠A-∠B=180°-70°-50°=60°∵DE//BC∴∠B=∠ADE=50°∵CD平分∠ACB鞏固練習(xí)甲樓高16米,乙樓座落在甲樓的正北面,已知當(dāng)?shù)囟林形?2點(diǎn),太陽光線與水平面夾角為450,如果甲樓的影子剛好不落在乙樓上,那么兩樓的距離應(yīng)是多少?甲乙16米450?45016米解:由題意知ABC∴BC=AB=16答:兩樓的距離是16米.拓展與思考12、在△ABC中,如果∠A=∠B=∠C,那么△ABC是什么三角形?解:設(shè)∠A=x°,那么∠B=2x°,∠C=3x°根據(jù)題意得:拓展與思考2解得∴∠A=30°,∠B=60°,∠C=90°所以△ABC是直角三角形小結(jié)1、三角形的內(nèi)角和:三角形三個(gè)內(nèi)角之和為180°2、由三角形內(nèi)角和等于180°,可得出(1)、直角三角形兩銳角互余;(2)、一個(gè)三角形最多有一個(gè)直角或鈍角;(3)、任意一個(gè)三角形中,最多有三個(gè)銳角,最少有兩個(gè)銳角;(4)、一個(gè)三角形中至少有一個(gè)角小于或等于60°3、三角形按角分類:三角形直角三角形斜三角形銳角三角形鈍角三角形學(xué)生課堂行為規(guī)范的內(nèi)容是:按時(shí)上課,不得無故缺課、遲到、早退。遵守課堂禮儀,與老師問候。上課時(shí)衣著要整潔,不得穿無袖背心、吊帶上衣、超短裙、拖鞋等進(jìn)入教室。尊敬老師,服從任課老師管理。不做與課堂教學(xué)無關(guān)的事,保持課堂良好紀(jì)律秩序。聽課時(shí)有問題,應(yīng)先舉手,經(jīng)教師同意后,起立提問。上課期間離開教室須經(jīng)老師允許后方可離開。上課必須按座位表就坐。要愛護(hù)公共財(cái)物,不得在課桌、門窗、墻壁上涂寫、刻劃。要注意保持教室環(huán)境衛(wèi)生。離開教室要整理好桌椅,并協(xié)助老師關(guān)好門窗、關(guān)閉電源。謝謝大家新人教版-八年級(jí)(上)數(shù)學(xué)-第十一章11.2.2三角形的外角學(xué)習(xí)目標(biāo)1、了解三角形的外角2、探索并了解三角形的一個(gè)外角等于它不相鄰的兩個(gè)內(nèi)角的和;3、學(xué)會(huì)運(yùn)用簡單的說理來計(jì)算三角形相關(guān)的角重點(diǎn)和難點(diǎn)重點(diǎn):三角形的外角性質(zhì)難點(diǎn):運(yùn)用三角形外角性質(zhì)進(jìn)行有關(guān)計(jì)算時(shí)能準(zhǔn)確地表達(dá)推理的過程和方法。三角形的內(nèi)角和等于180°三角形的內(nèi)角和定理BAC∠A+∠B+∠C=180°DBAC不相鄰內(nèi)角1234想一想:外角與相鄰內(nèi)角有什么特殊關(guān)系?外角∠4+∠3=180°外角與相鄰內(nèi)角的大小不能確定。三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角.歸納:1、每一個(gè)三角形都有6個(gè)外角.3、每個(gè)外角與相應(yīng)的內(nèi)角是鄰補(bǔ)角.2、每一個(gè)頂點(diǎn)相對(duì)應(yīng)的外角都有2個(gè).相鄰內(nèi)角觀察與思考ABDEFC外角ABDEFC外角畫一個(gè)三角形將它的所有外角畫出來。找出三角形的外角在圖1中,∠CBD是△ABC的外角,則∠CBD+∠ABC=()ABCD圖1180o動(dòng)動(dòng)小手:在一張白紙上任意畫一個(gè)三角形ABC,如圖2,把∠B、∠C剪下拼在一起,放到∠CAD上,看看會(huì)出現(xiàn)什么結(jié)果?ABCD圖2想一想根據(jù)圖形計(jì)算∠ACD的大小,通過計(jì)算,你發(fā)現(xiàn)了什么規(guī)律?BCAD350700BACD80040075°105°∠ACD=∠A+∠B60°120°∠ACD=∠A+∠BD因?yàn)椤螦CD+∠ACB=180°又因?yàn)椤螦+∠B+∠ACB=180°所以∠A+∠B=∠ACD
解:ABC所以∠ACD=180°-∠ACB所以∠A+∠B=180°-∠ACB(鄰補(bǔ)角的定義)(三角形內(nèi)角和180°)(等量代換)如何說明∠ACD=∠B+∠A思考1(CE//BA)AE擅長畫平行線的小明用另一種方法解釋了這個(gè)性質(zhì),看動(dòng)畫,你知道他是怎么解釋的嗎?CBD畫平行線法D解:過C作CE平行于ABABC12∠1=∠B∠2=∠A∠1+∠2=∠A+∠B即∠ACD=∠A+∠BE三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和畫平行線法∠ACD也是___________的外角ABCDE因此∠BDC=∠DAC+__________
△ADE△ADC∠DAE1、如圖∠BDC是________的外角,
=∠AED+__________應(yīng)用一
∠ACD
∠A(<、>);∠ACD
∠B(<、>)結(jié)論:三角形的一個(gè)外角大于任何一個(gè)與它不相鄰的內(nèi)角。三角形的內(nèi)角與外角的大小關(guān)系DACB>>∠ACD=∠A+∠BABCD1、三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和。
∠B+∠C=∠CAD2、三角形的一個(gè)外角大于任何一個(gè)與它不相鄰的內(nèi)角。∠CAD>∠B,∠CAD>∠C三角形外角的性質(zhì):∠α=___∠α=___∠α=____α45o20o35o∠α=___α123o80o∠α=___α25o35o∠α=___90o85o95o60o43o30o求下列各圖中∠α的度數(shù)。α60o30oα120o35oα45o50o應(yīng)用二如圖:點(diǎn)D在BC上,點(diǎn)E在AD上,比較∠B與∠1的大小。并說明你的理由?ABCED所以∠1﹥∠B1解:【我們不通過度量怎么來比較呢?
】所以∠1﹥∠EDC因?yàn)椤?是△CED的外角所以∠EDC﹥∠B因?yàn)椤螮DC是△ABD的外角例題講解1ABC123填空:與三角形的每個(gè)內(nèi)角相鄰的外角分別有
個(gè),這兩個(gè)外角是
,他們的大小
?!?+∠2+∠3就是△ABC的外角和。ABC123456兩對(duì)頂角相等探索與思考∠1+∠2+∠3=
度∠3+∠BCA=180°,∠1+∠BAC=180°,∠2+∠ABC=180°∠1+∠2+∠3=
度ABC123數(shù)學(xué)說理:三角形的外角和為360度。360猜一猜三式相加可得:∠1+∠2+
∠3+∠BAC+∠ABC+∠BCA
=540°∠BAC+∠ABC+∠BCA
=180°∠1+∠2+∠3=360°探索:例:如圖D是△ABC的BC邊上一點(diǎn),∠B=∠BAD,∠ADC=80°,∠BAC=70°,求:1)∠B的度數(shù),2)∠C的度數(shù)。在△ABC中:∠B+∠BAC+∠C=180°∠C=180o-40o-70o=70°解:因?yàn)椤螦DC是△ABD的外角所以∠ADC=∠B+∠BAD=80°又因?yàn)椤螧=∠BAD40°ABCD70°80°例題講解2______________________________1、下面的推理題連名偵探柯南也被難住了.他希望同學(xué)們能盡快的幫他解決下面的問題.
根據(jù)下列線索推理出這個(gè)三角形有關(guān)的角。線索1:在△ABC中,∠B=∠C;線索2:它的一個(gè)外角是100o;問題:它的各個(gè)內(nèi)角各是多少度?100°BCA100°ABC50°,50°,80°或80°,80°,20°答:它的各個(gè)內(nèi)角分別為拓展與思考12,有一次小明看見這樣一個(gè)圖,要計(jì)算:∠A+∠B+∠C+∠D+∠E+∠F=
度BCDAGMHEF360拓展與思考2
求∠A+∠B+∠C+∠D+∠E的度數(shù)國旗上的數(shù)學(xué)ABCDE12FG解:∵∠1是△FBE的外角∴∠1=∠B+∠E同理∠2=∠A+∠D在△CFG中∠C+∠1+∠2=180o∴∠A+∠B+∠C+∠D+∠E=180o
求∠A+∠B+∠C+∠D+∠E的度數(shù)國旗上的數(shù)學(xué)ABCDE12F3解:連接CD因?yàn)椤?是?CDE的外角所以∠3=∠1+∠2因?yàn)椤?是?BFE的外角所以∠3=∠B+∠E所以∠1+∠2=∠B+∠E所以∠A+∠B+∠C+∠D+∠E=∠A+∠ACB+∠1+∠ACB+∠2=∠A+∠ACD+∠ADC=180°國旗上的數(shù)學(xué)2、三角形的一個(gè)外角的性質(zhì)(3)三角形的一個(gè)外角大于任何一個(gè)與它不相鄰的內(nèi)角。1、三角形的內(nèi)角和180°三角形內(nèi)角和外角的性質(zhì)(1)三角形的一個(gè)外角與它相鄰內(nèi)角的關(guān)系是互為鄰補(bǔ)角。(2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和。3、三角形的外角的和等于360度。小結(jié)學(xué)生課堂行為規(guī)范的內(nèi)容是:按時(shí)上課,不得無故缺課、遲到、早退。遵守課堂禮儀,與老師問候。上課時(shí)衣著要整潔,不得穿無袖背心、吊帶上衣、超短裙、拖鞋等進(jìn)入教室。尊敬老師,服從任課老師管理。不做與課堂教學(xué)無關(guān)的事,保持課堂良好紀(jì)律秩序。聽課時(shí)有問題,應(yīng)先舉手,經(jīng)教師同意后,起立提問。上課期間離開教室須經(jīng)老師允許后方可離開。上課必須按座位表就坐。要愛護(hù)公共財(cái)物,不得在課桌、門窗、墻壁上涂寫、刻劃。要注意保持教室環(huán)境衛(wèi)生。離開教室要整理好桌椅,并協(xié)助老師關(guān)好門窗、關(guān)閉電源。謝謝大家新人教版-八年級(jí)(上)-數(shù)學(xué)-第十一章11.3.1多邊形(1)觀察生活中大量的圖片,認(rèn)識(shí)一些簡單的幾何體(四邊形、五邊形),了解多邊形及其內(nèi)角,對(duì)角線等數(shù)學(xué)概念;(2)能由實(shí)物中辨別尋找出幾何體,由幾何體圖形聯(lián)想或設(shè)計(jì)一些實(shí)物形狀;(3)了解類比的數(shù)學(xué)學(xué)習(xí)方法。學(xué)習(xí)目標(biāo)重點(diǎn)與難點(diǎn):(1)重點(diǎn):連接多邊形、內(nèi)角、外角、對(duì)角線的概念以及凸多邊形的形狀的辨別;(2)難點(diǎn):正多邊形的正確理解以及凸多邊形的辨別你能從下列圖形中找出一些平面圖形嗎?你能說出上述平面圖形的名稱嗎?三角形四邊形四邊形六邊形八邊形多邊形的有關(guān)概念什么叫三角形?由三條線段首尾順次連接而成的圖形叫做三角形.什么叫多邊形?
在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.
如果一個(gè)多邊形由n條線段組成,那么這個(gè)多邊形就叫做
n邊形.多邊形按組成它的線段的條數(shù)分成:三角形、四邊形、五邊形…等例1:請(qǐng)列出生活中的一些多邊形,并指出其特征分析:生活中存在很多的多邊形,它們的形狀都是為了與生活相適應(yīng)。解:房屋頂是三角形,因?yàn)槿切斡蟹€(wěn)定性;螺母底面為六邊形,是為了方便安裝和拆卸;黑板為四邊形,是為了滿足教學(xué)的使用;等等例題講解在多邊形的概念中,要分清以下幾個(gè)方面(1)在平面內(nèi);(2)若干線段不在同一直線上;(3)首尾順次相結(jié);(4)所形成的封閉圖形多邊形概念的重要提示:ABCDE多邊形相鄰兩邊組成的角叫做它的內(nèi)角.如:五邊形ABCDE的內(nèi)角有ABC三角形兩邊的夾角叫做三角形的內(nèi)角如圖中的∠A、∠B、∠C多邊形的內(nèi)角:三角形的內(nèi)角∠A、∠B、∠C、∠D、∠E共5個(gè).ABCDE2三角形的外角多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.如:∠2是五邊形ABCDE的一個(gè)外角.ABC1三角形一邊與另一邊的延長線組成的角如∠1就是?ABC的一個(gè)外角多邊形的外角:ABCDE連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線.如圖中的線段AC、AD、BE等三角形是最簡單的多邊形,研究可借助對(duì)角線將其分為若干個(gè)三角形多邊形的對(duì)角線:n邊形……三角形四邊形五邊形六邊形從同一頂點(diǎn)引對(duì)角線的條數(shù)123n-3分割出三角形的個(gè)數(shù)234n-201…………多邊形的對(duì)角線:例2:如圖,從五邊形ABCDE的一個(gè)頂點(diǎn)A出發(fā),順次間隔連接五邊形的各頂點(diǎn),得到的是一個(gè)什么樣的圖形?請(qǐng)動(dòng)手試一試。ABCDEABCDE分析:此題的關(guān)鍵是要審清題意,順次間隔連接五邊形的各頂點(diǎn),按照題意,動(dòng)手試試,馬上就能解決問題.解:得到的是一個(gè)五角星例題講解ABCDABCD圖1圖2圖2中,多邊形ABCD不在CD所在直線的同側(cè),就不是凸多邊形,叫凹多邊形.在圖1中,畫出任意一邊所在的直線,整個(gè)多邊形都在直線的同側(cè),這樣的多邊形叫做凸多邊形.沒有特別說明,我們研究的多邊形都是指凸多邊形.多邊形的分類觀察圖中的多邊形,他們的邊、角有什么特點(diǎn)?在平面內(nèi),各個(gè)角都相等、各條邊都相等的多邊形叫做正多邊形。正三角形正方形正五邊形正六邊形正八邊形正多邊形的概念當(dāng)n>3時(shí),必須同時(shí)滿足以下兩個(gè)條件:(1)是各邊相等,(2)是各角相等.兩者缺一不可如長方形各角相等,但各邊不一定相等,菱形各邊相等,但各角不一定相等,所以它們都不是正多邊形。判斷一個(gè)n邊形是正n邊形的條件是:菱形矩形正三角形正方形例3:如圖,在正方形ABCD中,你能用四種不同的方法把正方形面積四等分嗎?ABCD分析:正方形的面積問題一般可以轉(zhuǎn)化為三角形問題,本題也可以直接把正方形四等分.解:如圖所示例題講解1、如圖,此多邊形應(yīng)記作_____邊形________,AB邊的鄰邊是_______、__________,頂點(diǎn)E處的內(nèi)角為__________,過頂點(diǎn)A畫出這個(gè)多邊形的對(duì)角線,共有_________條,它們把多邊形分成_________個(gè)三角形。五ABCDEAEBC∠AED23課堂練習(xí):6、多邊形分為___________和____________兩類.5、正多邊形的_____相等,____相等.4、從五邊形的一個(gè)頂點(diǎn)出發(fā)可以畫_____條對(duì)角線,它們將五邊形分成______個(gè)三角形.3、四邊形有_____條對(duì)角線。五邊形有______條對(duì)角線。四邊形的一條對(duì)角線將它分成______個(gè)三角形.2、n邊形有______個(gè)頂點(diǎn),_____邊,有_____個(gè)角,有________個(gè)不共頂點(diǎn)外角.nnnn25232邊角凸多邊形凹多邊形課堂練習(xí)7、把一個(gè)五邊形鋸去一個(gè)內(nèi)角后得到是什么圖形?請(qǐng)畫圖說明①②③解:五邊形鋸去一個(gè)內(nèi)角后得到的圖形可能是六邊形,如圖①;五邊形,如圖②;四邊形,如圖③拓展題小結(jié)1、多邊形的定義在平面內(nèi),由一些線段首尾順次相接組成的圖形2、多邊形的內(nèi)角多邊形相鄰兩邊組成的角3、多邊形的外角多邊形的一邊與它相鄰邊的反向延長線組成的角4、多邊形的對(duì)角線連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段5、正多邊形各個(gè)角相等,各條邊都相等的多邊形學(xué)生課堂行為規(guī)范的內(nèi)容是:按時(shí)上課,不得無故缺課、遲到、早退。遵守課堂禮儀,與老師問候。上課時(shí)衣著要整潔,不得穿無袖背心、吊帶上衣、超短裙、拖鞋等進(jìn)入教室。尊敬老師,服從任課老師管理。不做與課堂教學(xué)無關(guān)的事,保持課堂良好紀(jì)律秩序。聽課時(shí)有問題,應(yīng)先舉手,經(jīng)教師同意后,起立提問。上課期間離開教室須經(jīng)老師允許后方可離開。上課必須按座位表就坐。要愛護(hù)公共財(cái)物,不得在課桌、門窗、墻壁上涂寫、刻劃。要注意保持教室環(huán)境衛(wèi)生。離開教室要整理好桌椅,并協(xié)助老師關(guān)好門窗、關(guān)閉電源。謝謝大家新人教版-八年級(jí)(上)-數(shù)學(xué)-第十一章11.3.2多邊形的內(nèi)角和(1)掌握多邊形的內(nèi)角和的計(jì)算方法,并能用內(nèi)角和知識(shí)解決一些較簡單的問題;(2)通過多邊形內(nèi)角和的計(jì)算公式的推導(dǎo),培養(yǎng)探索和歸納的能力;(3)體驗(yàn)轉(zhuǎn)化的數(shù)學(xué)思想方法。學(xué)習(xí)目標(biāo)重點(diǎn)與難點(diǎn):(1)重點(diǎn):多邊形內(nèi)角和以及外角和;(2)難點(diǎn):多邊形內(nèi)角和以及外角和的推導(dǎo)。3、三角形的內(nèi)角和是_____度.2、在多邊形中連接______________________的線段叫做多邊形的對(duì)角線。1、在平面內(nèi),___________________________叫做多邊形。由一些線段首尾順次相接組成的圖形多邊形不相鄰的兩個(gè)頂點(diǎn)1804、正方形的內(nèi)角和是
度,長方形的內(nèi)角和是
度。36003600知識(shí)回顧ABCD任意一個(gè)四邊形的內(nèi)角和都等于360°思路:把求四邊形內(nèi)角和的問題轉(zhuǎn)化為三角形問題來解決!想一想:一般的四邊形的內(nèi)角和是多少度呢五邊形的內(nèi)角和為5400七邊形的內(nèi)角和為9000六邊形的內(nèi)角和為7200四邊形、五邊形、六邊形、七邊形從一個(gè)頂點(diǎn)出發(fā)分別可以引多少條對(duì)角線?分別把多邊形分成多少個(gè)三角形?你能從中探索出規(guī)律嗎?試求五邊形、六邊形、七邊形的內(nèi)角和.探索與思考多邊形邊數(shù)34567n從一個(gè)頂點(diǎn)引對(duì)角線的條數(shù)分成的三角形個(gè)數(shù)多邊形的內(nèi)角和n-24321054321n-318003600540072009000(n-2)×1800從n邊形的一個(gè)頂點(diǎn)可以引_____對(duì)角線,把多邊形分成____個(gè)三角形.n邊形的內(nèi)角和等于______n-3n-2(n-2)×1800探索與思考完成下表AEDCBO154325x180°–360°=3x180°在五邊形內(nèi)任取一點(diǎn)O,連接OA、OB、OC、OD、OE。探索與思考除了上述我們利用對(duì)角線,將一個(gè)多邊形分割成幾個(gè)三角形外,還有其它的分割方法嗎AEDCBO12344x180°–180°=3x180°在CD上取一點(diǎn)O,連接OB、OA、OE探索與思考AEDCBO15432AEDCBO1234ABCDE探索與思考1.求下列圖形中x的值.(1)(2)鞏固練習(xí)2x+140+90=360360-80-120-75=180-xx=65°x=95°(2)七邊形的內(nèi)角和等于______度.2、填空題900(7-2)×180(3)一個(gè)多邊形的內(nèi)角和等于720°,那么這個(gè)多邊形是______邊形.六(4)如果一個(gè)四邊形的一組對(duì)角互補(bǔ),那么另一組對(duì)角__________也互補(bǔ)(1)多邊形的內(nèi)角和隨著邊數(shù)的增加而______,邊數(shù)增加一條時(shí),它的內(nèi)角和增加________度
.增加180鞏固練習(xí)如圖,在六邊形的每一個(gè)頂點(diǎn)處各取一個(gè)外角,這些外角的和叫做六邊形的外角和.六邊形的外角和等于多少度?解:如圖,六邊形ABCDEF中,∠1+∠7=180°,∠2+∠8=180°,∠3+∠9=180°,∠4+∠10=180°,∠5+∠11=180°,∠6+∠12=180°.∵∠7+∠8+∠9+∠10+∠11+∠12=(6-2)×180°=720°,
結(jié)論:多邊形的外角和等于360°.例題講解∴∠1+∠2+∠3+∠4+∠5+∠6=6×180°-720°=360°.對(duì)于n邊形,結(jié)論仍然成立!探索多邊形的外角和多邊形邊數(shù)34567n多邊形的內(nèi)角和多邊形的外角和18003600540072009000(n-2)×1800360036003600360036003600多邊形的外角和等于______3600探索與思考1、n邊形的內(nèi)角和等于______________,九邊形的內(nèi)角和等于_______________________。2、一個(gè)多邊形的內(nèi)角和等于1440°,那么它是______邊形,它的外角和為____。3、正五邊形的每一個(gè)內(nèi)角的度數(shù)是_______,每個(gè)外角度數(shù)為____。4、從六邊形的一個(gè)頂點(diǎn)出發(fā)可畫_____條對(duì)角線,這些對(duì)角線把六邊形分成_____個(gè)三角形。5、一個(gè)六邊形共有_____條對(duì)角線。(n-2)?180°(9-2)?180°=1260°十108°三四3+3+2+1=993600720隨堂練習(xí)ABCDEF2、四邊形ABCD的內(nèi)角∠A∶∠B∶∠C∶∠D=1∶2∶3∶4,求各個(gè)角的大小。ABCD解:設(shè)∠A=x°則∠B=2x°,∠C=3x°,∠D=4x°因?yàn)椤螦+∠B+∠C+∠D=360°所以x+2x+3x+4x=36010x=360x=36∠A=36°,∠B=72°,∠C=108°,∠D=144°例題講解3、過某個(gè)多邊形一個(gè)頂點(diǎn)的所有對(duì)角線,將這個(gè)多邊形分成5個(gè)三角形。這個(gè)多邊形是幾邊形?它的內(nèi)角和是多少?解:由題意得:n-2=5設(shè)這個(gè)多邊形的邊數(shù)為n,n=7內(nèi)角和=(n-2)x180°=(5-2)x180°=900°答:這個(gè)多邊形是七邊形,它的內(nèi)角和是900°例題講解4、一個(gè)多邊形的內(nèi)角和等于外角和的,求這個(gè)多邊形的邊數(shù)。n=11解:設(shè)這個(gè)多邊形的邊數(shù)為n,根據(jù)題意得:答:這個(gè)多邊形的邊數(shù)為11。例題講解1、在四邊形的四個(gè)內(nèi)角中,最多有_____個(gè)鈍角,最多能有______個(gè)銳角.2、一個(gè)多邊形的每個(gè)內(nèi)角都是150°,它是____邊形。3、已知一個(gè)多邊形,它的內(nèi)角和等于五邊形的內(nèi)角和的2倍,這個(gè)多邊形是_______邊形.4、已知一個(gè)多邊形的邊數(shù)恰好是從一個(gè)頂點(diǎn)所畫的對(duì)角線的條數(shù)的2倍,則此多邊形是______邊形.5、一個(gè)多邊形的邊數(shù)增加1,則內(nèi)角和增加的度數(shù)是(
)A.60°
B.90°
C.180°
D.360°331286C隨堂練習(xí)6、如圖:某居民小區(qū)搞綠化,分別在三角形、四邊形、五邊形的廣場各角修建半徑為1米的花壇.小區(qū)綠化組長想先求花壇的面積,再根據(jù)面積買花苗.你能幫綠化組長求出花壇的面積嗎?(結(jié)果保留π)隨堂練習(xí)解:假設(shè)這個(gè)多邊形的邊數(shù)是n,那個(gè)內(nèi)角的度數(shù)為x則有:(n-2)x180=2750+x因?yàn)閚是正整數(shù),所以2750+x也是180的倍數(shù)因?yàn)閤<180所以x=130所以(n-2).180=2880所以n=181、已知一個(gè)多邊形除了一個(gè)內(nèi)角外,其余各內(nèi)角的和是2750°,求這個(gè)多邊形的邊數(shù)。拓展練習(xí)DCBEAF∠F=360解:因?yàn)槲暹呅问钦暹呅嗡浴螧AE=∠DAE拓展練習(xí)=108°所以∠FAE=72°,∠FEA=72°2、如圖:我國的國旗上的五星是正五角星,正五角星中的五邊形ABCDE是正五邊形,你能求出五角星中∠F的度數(shù)?3、把一個(gè)五邊形鋸去一個(gè)內(nèi)角后得到是什么圖形?此時(shí),多邊形的內(nèi)角和與外角和有什么變化?①②③解:五邊形鋸去一個(gè)內(nèi)角后得到的圖形可能是四邊形,如圖①;五邊形,如圖②;六邊形,如圖③拓展練習(xí)其內(nèi)角和分別是360°,540°,720°。是原來的多邊形內(nèi)角和度數(shù)本身,少180度和多180度小結(jié)1、n(n≥3)邊形的的內(nèi)角和為(n-2)x180°2、任意多邊形的外角和等于360°4、多邊形的邊數(shù)與內(nèi)角和及外角和的關(guān)系:內(nèi)角和與邊數(shù)成正比,邊數(shù)增加,內(nèi)角和增加,邊數(shù)減少,內(nèi)角和減少,每增加一條邊,內(nèi)角和增加180°(反過來也成立),邊數(shù)的內(nèi)角和是180°的整數(shù)倍。多邊形的外角和恒等于360°,與邊數(shù)多少無關(guān)。5、正n(n≥3)邊形的的內(nèi)角和為每個(gè)外角都等于學(xué)生課堂行為規(guī)范的內(nèi)容是:按時(shí)上課,不得無故缺課、遲到、早退。遵守課堂禮儀,與老師問候。上課時(shí)衣著要整潔,不得穿無袖背心、吊帶上衣、超短裙、拖鞋等進(jìn)入教室。尊敬老師,服從任課老師管理。不做與課堂教學(xué)無關(guān)的事,保持課堂良好紀(jì)律秩序。聽課時(shí)有問題,應(yīng)先舉手,經(jīng)教師同意后,起立提問。上課期間離開教室須經(jīng)老師允許后方可離開。上課必須按座位表就坐。要愛護(hù)公共財(cái)物,不得在課桌、門窗、墻壁上涂寫、刻劃。要注意保持教室環(huán)境衛(wèi)生。離開教室要整理好桌椅,并協(xié)助老師關(guān)好門窗、關(guān)閉電源。謝謝大家第十二章全等三角形怎樣配回打碎的三角形玻璃12.1全等三角形能夠完全重合的兩個(gè)圖形叫做全等形觀察下面兩組圖形,它們是不是全等圖形?為什么?(1)如果兩個(gè)圖形全等,它們的形狀一定相同、大小一定相等!定義:能夠完全重合的兩個(gè)三角形叫_________全等三角形ABCDEFAACBDE圖1圖2圖3ABCDBCNMF看我七十二變一個(gè)三角形經(jīng)過平移、旋轉(zhuǎn)、翻折后所得到的三角形與原三角形全等。其中點(diǎn)A和__,點(diǎn)B和__,點(diǎn)C和__是對(duì)應(yīng)頂點(diǎn)。AB和___,BC和___,AC和___是對(duì)應(yīng)邊?!螦和___,∠B和___,∠C和___是對(duì)應(yīng)角。DEFDEEFDF∠D∠E∠FABCDEF
把兩個(gè)全等的三角形重合到一起,重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),
重合的角叫做對(duì)應(yīng)角。重合的邊叫做對(duì)應(yīng)邊,ABCDEF“全等”用符號(hào)“≌”表示,讀作“全等于”如上圖:△ABC全等于△DEF記作:△ABC
≌△DEF
(注意:書寫時(shí)應(yīng)把對(duì)應(yīng)頂點(diǎn)寫在相對(duì)應(yīng)的位置上)ABCDEF全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。如圖:∵△ABC≌△DEF∴AB=DE,BC=EF,AC=DF
()∠A=∠D,∠B=∠E,∠C=∠F
()全等三角形的對(duì)應(yīng)邊相等全等三角形的對(duì)應(yīng)角相等ABCDEF同步練習(xí)1
1、全等用符號(hào)
表示,讀作:。
2、若△ABC≌△DEF,則∠B=
,∠BAC=
,BC=
,AC=
.
≌全等于∠EEFDF∠EDFACBDFE第二題圖
同步練習(xí)2判斷題
1)全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。()
2)全等三角形的周長相等。()
3)全等三角形的面積不相等。()
√√X同步練習(xí)31、若△AOC≌△BOD,AC=
∠A=ABOCD
2、若△ABD≌△ACE,BD=
,∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 度渠道合作合同協(xié)議
- 2025年產(chǎn)品銷售協(xié)議與定制加工合同范文
- 2025年標(biāo)準(zhǔn)版商業(yè)租賃合同協(xié)議
- 合伙企業(yè)投資入股合同范本
- 2025年農(nóng)村休閑度假基地性承包合同
- 兼職造價(jià)員聘用合同協(xié)議
- 2025年合作伙伴合同規(guī)定
- 人力資源外包合同典范
- 化工原料采購合同(公路運(yùn)輸)專業(yè)版
- 2025年上海涉外租房合同標(biāo)準(zhǔn)格式
- 新版《醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范》(2024)培訓(xùn)試題及答案
- 2025年人教版數(shù)學(xué)五年級(jí)下冊(cè)教學(xué)計(jì)劃(含進(jìn)度表)
- 部編人教版二年級(jí)道德與法治下冊(cè)同步練習(xí)(全冊(cè))
- 養(yǎng)老院風(fēng)險(xiǎn)管控手冊(cè)
- 99S203 消防水泵接合器安裝圖集
- 寶石學(xué)基礎(chǔ)全套課件
- 手術(shù)風(fēng)險(xiǎn)及醫(yī)療意外險(xiǎn)告知流程
- 綜合實(shí)踐活動(dòng)六年級(jí)下冊(cè) 飲料與健康課件 (共16張PPT)
- 數(shù)量金融的概況和歷史課件
- 專業(yè)醫(yī)院lovo常用文件產(chǎn)品介紹customer presentation
- 叉車日常使用狀況點(diǎn)檢記錄表(日常檢查記錄)
評(píng)論
0/150
提交評(píng)論