版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
--參考文獻劉瑞偉.我國農(nóng)作物秸稈利用現(xiàn)狀及對策[J].農(nóng)業(yè)與技術,2009年,第29卷,第1期:7-9張巖松,劉琳,馬飛良.國內(nèi)外秸稈燃料及燃燒設備研究與開發(fā)現(xiàn)狀[J].可再生能源,2002年,第4期:14-15張素.努力開發(fā)工業(yè)鍋爐生物質燃燒技術前景分析[J].工業(yè)鍋爐,1999年,第3期:2-3戰(zhàn)學琴,李剛.小型燃煤鍋爐改造成秸稈成型燃料鍋爐的前景分析[J].農(nóng)村能源,2001年,第5期:20-22NeilRyder.AlternativefuelscouldfeedDraxandfarmers[J].FarmersGuardian,2004,29(10):10姚向君.國外生物質能的政策與實踐[M].化學工業(yè)出版社,2006:10-12Morgan.P.Doran.Developingthebioenergyindustry[J].Biocycleinternational,2004,8(3):75-78張璐.國內(nèi)外生物質能源的應用與發(fā)展現(xiàn)狀研究[J].才智,2014年,第30期:7-9張榮成,李秀金.作物秸稈能源轉化技術研究進展[J].現(xiàn)代化工,2005年,第25卷,第6期:14-17耿颯,徐存拴,李玉昌.木質素的生物合成及其調(diào)控研究進展[J].西北植物學報,2003年,第23卷,第1期:171-181濮良貴,陳國定,吳立言.機械設計[M].高等教育出版社,2013:151-152SrivastavaAKandGoeringCE.Engineeringprinciplesofagriculturalmachines[M].AmericanSocietyofAgriculturalEngineers,1993:28-31田宜水,趙立欣,孟海波等.我國生物質固體成型燃料標準體系的研究[C].2008中國生物質能源技術路線標準體系建設論壇論文集,2008:1-5TheresaMandWelbourne.EntrepreneurshipTheoryandPractice[M].2000:93-106TonyJames.SolidworksforDesignersTextbook[C].CADCIMTechnologies,2010:1-7附錄AIntegrateddesignforlarge-scaleopto-mechanicalstructureChrisLucky,JamesLee,BruceKing.AppliedThermalEngineering,2016,8(6):556-568.Abstract:Anintegrateddesignmethodisdiscussedwhichthoroughlyconsidersrelatedparametersofthevarioussubsystemsinordertooptimizetheoverallsystemthatmainlyconsistsofopto--mechanicalstructureCAD,CAEandtheintegratedinformationplatformPDM.Basedontheparameterdriveofthevirtualmainmodel,themethodfocusesonthemodeltransformationanddatashareamongdifferentdesignandanalysissteps,andsotheconcurrentsimulationanddesignoptimizationarecarriedout.Asanexampleofapplication,theintegrateddesignforalarge-scaleopto-mechanicalstructureisintroduced,includingopticaldesign,structuredesignandanalysis,whichfurthervalidatestheadvantagesofthemethod.DuetocomprehensiveconsiderationofthedesignandanalysisprocessbyCADandCAEbasedonPDM,theintegrateddesignwellattainsthestructureoptimizationwithhighefficiency.Keywords:integrateddesign,CAD/CAE,large-scalestructure,opticalinstrument.1.IntroductionLarge-scaleopticalinstruments,suchaslargetelescopesandlasercommunicationterminals,belongtotheoptical-mechanical-electricintegratedsystems,whicharecharacterizedbyalarge-scaleclearapertureandhighprecision[1,2].Developmentofsuchinstrumentsinvolvesmanykeytechniques,forinstance,largemirrormountingdesign,high-accuracyspecialbaseframe,largeprecisionshafting,high-accuracydrivingtechnique,ultrathinopticalcomponentsupport,activecontrolforthinmirrorsurfacedeformation,newmaterialandmachinetechnique,andsoon.Intheearlydesignoflarge-scaleopticalinstruments,duetothelackofdesignexperience,sufficienttolerancesareusuallyscheduledforinitialdesignparameters.Aftertheengineeringprototypeiscompleted,itsactualtestresultsarecontrastedtothedesignindexestoevaluatethedesignquality,andsomestructuresandparametersmayinturnbemodifiedtilltheinstrumentdesignisinagreementwiththedesignrequirements.Atpresent,thismethodisnotencouragedforheavytask,highexpense,longcycle,andespeciallyunattainableoptimizationofthedesignresults.Withthewideapplicationofcomputertechniquesinvariousengineeringfields,thetechniquesofCADandCAEhaverapidlydevelopedandledtotheinnovationindesignmethodsofmodernopticalinstrumentstructure.In1980,JacobM.Miller,AmericanresearcheratHoneywellElectro-OpticalSystemsCenter,firstlyproposedtheconceptsandstepsofoptical-mechanical-electricintegrateddesignmethod,andenumeratedthesoftwareused.Meanwhilehesuccessfullyanalyzedtheoptical--electricsensorbyusingthemethod.BasedonCAD/CAEtechniques,theoptical--mechanical-electricintegratedmethodisusedtoanalyzeandsimulatethegeometrymodelandfiniteelementmodelcorrespondingtothevirtualprototypeoftheinstrument,andoverall,considersmutualactionsandconstraintsofvarioussubsystemssothatthestructureparametersaresystemically,consistentlyanddynamicallybalancedtofinallyoptimizethewholesystemparameters.Inthepaper,wefurtherdiscussanintegrateddesignmethod,whichfullyconsidersthemodeltransformationandoptimizationoftheparametersduringtheentiredesignprocess,mainlyincludingopto-mechanicalstructuredesignandanalysisbyCAD,CAEandespeciallytheintegratedinformationsharethroughproductdatamanagement(PDM).Asanexample,alarge-scaleopticalinstrumentstructureisdevelopedbythismethod.Theintegrateddesignandsimulationarecarriedoutfortheoverallsystem.2.Opto-mechanicalstructureCADmodelThemechanicalstructureasthemountingsupportstheopticssystemandensurestheopticsperformanceandthesystemreliability.Theconstraintsofmechanicalstructurearegenerallydividedintotwotypesaccordingtotheireffectivenessinopticssystemandapplicationenvironment,theauxiliarypartsofopticssystemandthemountingmechanismsofopticscomponents.Theopto-mechanicalstructuresincludetwoaspectsofstaticstructureanddynamicalone,andbothofthemcollaborativelyrealizetheopticsperformanceunderthedifferentapplicationconditions.Therefore,thestructuredesignneedstocorrespondinglyconsiderstaticstiffnessandmotionreliability.Asregardsalargemechanicalstructure,especiallyusedinspecialenvironmentsuchasspaceconditions,theweight,volumeandpowerconsumptionbecomethemainfactorstobeconsidered,andsomespecialstructure,materialandtechnologyaretobeadoptedtooptimizethesystemdesign.Figure1showstheopto-mechanicalstructureACDflow.Firstly,accordingtotheopticssystemrequirements,aconceptofstructuredesignisputforwardandpreliminarycalculationiscarriedout.Then,avirtualprototypeofthewholestructureisbuilt,includingallparts,allcomponentsandoverallassembly.Finally,afterthegeometrydimensionsandmaterialsareset,thecharacterparametersandstructurerationalitycanbetestedandmodifiedinturn.Togetherwiththedynamicalperformancesimulationbasedonvirtualmotionmodel,wecanfullycheckthefeasibilityofthedesignprojectanddecidewhetherornottochangethedesigndetailsoreventheproject.Moreover,wecaneitherimporttheCADmodelintoFEAsoftwarebyformattransformationsuchasIGES,STEP,DFX,etc.,ortransfertheCADmodeltoFEAsoftwarethroughtheinterfaceprocessingprogramprocessor.Figure1.ThedesignprocessofopticalstructureofACD.3.Opto-mechanicalstructureCAEanalysisDuetothelargestructureandhighprecisioninalarge-scaleopticalinstrument,itisnecessarytoevaluatethedesignbyfiniteelementanalysismethod,includingstructureanalysis,thermalanalysisandopticalanalysis.Inordertorealizetheintegrateddesignandsystemoptimization,collaborativesimulationandanalysismustcoverthewholeprocessincludingprojectselection,structuredesign,motionsimulation,thermaldesign,assemblyanalysisandmachiningprocess.Generally,thestepsofFEAmethodconsistofsolidmodeling,generatingmeshes,settingconditions,solvingandpost-processing.Thestructurestaticsanalysisisintendedforresearchintothestructureresponseshownbystrainandstress.Foralarge-scalestructure,thegravityeffectmustbeconsidered,whichusuallyinducestheelasticdeformation,especiallyseriousinspaceenvironment.Thedynamicsanalysismainlyresolvesthevibrationmodeandgainsthedynamicrigidity.Inotherwords,thestructureweaknessaswellastheresistingfracturecapabilitycanbefoundthroughthevibrationmodeanalysis.Conduction,convectionandradiationasthreeheattransfermodeswidelyexistinlarge-scaleinstruments,includingsteadyandtransienttemperaturefield.Throughthethermalanalysistogetthermalperformance,thethermalcontrolprojectofopticalinstrumentcanbeimplemented,whichwillguidethestructuredesigntomeettherequirementsofopticsperformance.However,nomaterwhichprojectofthemechanicalstructureisused,itmustcentertheopticssystem,andthefinalanalysisistoimprovetheopticalperformance.Figure2givesrelationsofthevariousanalysisprocesses,whichcanberealizedbythedatainterchangeandintegrationamongdifferentsoftware.TheZernikefittingmethodisusuallyemployedtoevaluatetheopticsperformancesuchaswavefrontanalysis,transformationfunction,andsoon.InFigure3,anexampleofourpriorFEAonalarge-scaleopto-mechanicalstructureisshown.Figure.2.RelationsamongdifferentFEAprocesses.4.PDMinformationintegrationPDMastheintegratedplatformbridgesthedesignandanalysisprocess,andsharesdatabasedonthevirtualmainmodel,whichapproachestheparameterdriveandrealtimemodificationduringthewholedesign.PDMgenerallyincludesCADmodeldata,technologyandfiledata,FEAanalysisandsimulationdata,etc.DifferentCADandCAEsubsystemsallcansharedatainformationbyPDM.Forinstance,inCIMS(computerintegratedmanufacturingsystem)basedonconcurrentengineering,PDMplaysakeyrolefordifferentsubsystemswithhighefficiency.Moreover,withthedevelopmentofnetworktechnology,PDMreliesontheCAN(controllerareanetwork)andclient-serversystemstructurewillefficientlybuildthecollaborativeandintegratedworkenvironment,includingprojectdesign,systemsimulationandanalysis,productmanagementoverthewholelifecycle,andevenalltheproductionandserviceprocessinthemarket.Figure4showsPDMapplicationinopticalinstrumentdesignandanalysis.Fig.3.FEAprocessofaprismassembly.Fig.4.DesignandsimulationbasedonPDMsystem.5.Adesignexampleofalarge-scaleopticalstructureWedevelopaFizeauinterferometerwitha360mmclearaperturebytheintegrateddesignmethod.Figure5showsthedesignandoptimizationflowofthereferencemirrorandmountingstructureintheinterferometer.WeuseWindchillPDMLinktosolvethedistributedproductdatamanagementproblem,includingfilemanagement,modeldatamanagement,informationsavingandopening.CADandCAEsoftwareincludeopticsdesignsoftwareofCODEV,2Dand3DdesignsoftwareofAutoCADandPro/Engineer,FEAsoftwareofAnsys,calculationsoftwareofMatlab,etc.Fig.5.Anexampleofdesignprocess:integrateddesignofreferencemirrorstructureoftheFizeau.InFigure5thearrowsshowthedataflowbetweendifferentdesignmodules.Firstly,thevirtualmodeloftheopticalinstrumentisconceptuallydesignedbyPro/EngineeringandCODEV.Thenthefiniteelementmethodistakenforthestaticanddynamicalanalysis,aswellasthetemperaturefieldanalysis,byCAEsoftwareofAnsys1.0.Thirdly,thestructureandthermalcontrolprojectisfurtheranalyzedandoptimizedthroughtheCAEresultagainandagain,andvariousopticalaberrationsaresolvedandcorrected.Finally,thewholeprocessisbasedonPDM,andrelateddatabetweenCADandCAEmodelshareeachothertillrealizingtheoveralldesignoptimization.Thewholedesignprocessisundertheintegratedframework,andtheintegrateddesignmethodthroughdynamicaldatainteractionhighlyimprovesthedesignefficiencyandquality.6.ConclusionsInordertoovercomethedisadvantagesofthetraditionaldesignoflarge-scaleopticalinstruments,theintegrateddesignmethodisintroducedforcompleteconsiderationofthedesignprocesstoattaintheoverallsystemoptimization,whichmainlyconsistsofthreeaspects,includingopto-mechanicalstructureCAD,opto-mechanicalstructureCAEandPDMinformationintegration.Withthedevelopmentsinnetworkandsoftwaretechniques,thefuturelarge-scaleopticalinstrumentdesignwillmainlytendtowardstwoaspects.Ontheonehand,theintegrateddesignbasedonWebPDMwillplayanimportantroleincomplicatedanddynamicaldatatreatment.Ontheotherhand,theOpto-CADsoftwareemergingwillbetterfacilitatethevisualizationandinterferometerwitha360mmclearaperture.附錄B大型光電集成的機械結構設計ChrisLucky,JamesLee,BruceKing.AppliedThermalEngineering,2016,8(6):556-568.摘要:討論了充分考慮相關的參數(shù)是一個集成的設計方法為各子系統(tǒng)優(yōu)化的整體系統(tǒng),主要由光電—機械結構CAD,CAE與PDM集成信息平臺?;诘奶摂M模型的參數(shù)驅動的方法,側重于模式的轉型的設計和分析的步驟之間的數(shù)據(jù)共享,所以并行仿的設計進行優(yōu)化。作為應用實例,綜合設計介紹了一種大型光學機械結構,包括光學設計,結構設計與分析,進一步驗證了該方法的優(yōu)點。由于分析了基于PDM和CAD和CAE過程的設計,集成設計達到結構優(yōu)化效率高。關鍵詞:集成設計;CAD/CAE;大規(guī)模的結構;光學儀器1.簡介大型光學儀器,如大型望遠鏡和激光通信終端,屬于光機電一體化系統(tǒng),它是通過大規(guī)模的清晰的光圈和高精度的。發(fā)展這種儀器,涉及到許多關鍵技術,例如,大鏡子安裝設計,高精度的專用底座,大型精密軸系,高精度驅動技術,超薄光學組件的支持,薄鏡面主動控制表面變形,新材料和加工技術等等。在大型光學儀器設計的早期,由于缺乏設計經(jīng)驗,足夠的公差通常安排在初始設計參數(shù)。工程樣機完成后,實際測試結果對比設計指標來評價設計質量,并和一些參數(shù)的結構可能會被修改到儀器的設計是在設計協(xié)議要求。目前,鼓勵繁重的任務,這種方法是不高的費用,長周期和特別是高不可攀的優(yōu)化設計結果。隨著計算機技術在各個工程領域的廣泛應用,CAD和CAE技術的快速發(fā)展,LED的創(chuàng)新現(xiàn)代光學儀器結構設計方法。1980,雅各伯米勒,在霍尼韋爾電子光學系統(tǒng)中心的美國研究人員,首先提出了的概念和光機電一體化設計的方法和步驟列舉了應用軟件。同時,他成功地分析了光—利用電傳感器的方法?;贑AD/CAE技術,光學—-機電一體化的方法用于分析和模擬幾何模型和有限元模型對應的儀器的虛擬樣機,總體而言,考慮各子系統(tǒng)的相互作用和約束結構參數(shù)進行了系統(tǒng)的,一致的和動態(tài)平衡,最后,優(yōu)化整個系統(tǒng)的參數(shù)。在本文中,我們進一步討論一個集成的設計方法,充分考慮了整個設計過程中的參數(shù)模型的改造和優(yōu)化的過程,主要包括光學機械結構設計與分析的CAD,CAE技術特別是集成信息共享通過產(chǎn)品數(shù)據(jù)管理(PDM)。作為一個例子,一個大型光學儀器結構開發(fā)的方法。對整個系統(tǒng)進行了綜合設計與仿真。2.光學機械結構CAD模型機械結構的安裝支持光學系統(tǒng)和保證光學性能和系統(tǒng)的可靠性。機械約束結構一般分為兩種類型,根據(jù)其有效性在光學系統(tǒng)和應用環(huán)境,光學系統(tǒng)和輔助部件光學元件的安裝機構。光機結構包括靜態(tài)結構和動態(tài)兩方面,都協(xié)同實現(xiàn)光學性能的不同條件下的應用條件。因此,結構設計需要相應地考慮靜態(tài)和運動可靠性的剛度。至于大的機械結構,特別是用于特殊環(huán)境如空間條件,重量,體積和功率消費成為要考慮的主要因素,以及一些特殊的結構,材料和工藝是采用優(yōu)化的系統(tǒng)設計。圖1顯示了光機結構ACD流。首先,根據(jù)光學系統(tǒng)的要求,一種結構設計概念的提出和進行了初步的計算。然后,一個虛擬的整個結構的原型建立,包括所有的零部件,所有零部件和總體裝配。最后,經(jīng)過幾何尺寸和材料特性和結構參數(shù)設置大型光電集成的機械結構設計理性可以進行測試和修改反過來。結合動力學基于虛擬運動仿真模型的性能,我們完全可以檢查該設計方案的可行性和決定是否改變設計細節(jié)甚至工程。此外,我們可以導入到CAD模型的有限元分析通過格式轉換如IGES,DFX,等軟件,或轉移的CA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度不動產(chǎn)抵押擔保房地產(chǎn)抵押登記合同樣本3篇
- 金屬護欄施工方案
- 2025年度綠色能源產(chǎn)品研發(fā)與市場拓展合同4篇
- 2025版塔吊司機與司索工安全操作雇傭協(xié)議書10篇
- 二零二四年度小程序與在線教育平臺合作開發(fā)合同3篇
- 2025房屋租賃合同以及注意事項
- 二零二四年度醫(yī)藥產(chǎn)品研發(fā)與臨床試驗合同
- 鋼框架結構施工方案
- 2025版平方家具買賣合同范本(含運輸安裝)3篇
- 《盛明雜劇》評點研究
- 《色彩基礎》課程標準
- 人力資源 -人效評估指導手冊
- 大疆80分鐘在線測評題
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 2024中考復習必背初中英語單詞詞匯表(蘇教譯林版)
- 《現(xiàn)代根管治療術》課件
- 肩袖損傷的護理查房課件
- 2023屆北京市順義區(qū)高三二模數(shù)學試卷
- 公司差旅費報銷單
- 2021年上海市楊浦區(qū)初三一模語文試卷及參考答案(精校word打印版)
- 八年級上冊英語完形填空、閱讀理解100題含參考答案
評論
0/150
提交評論