版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,其中a,b是實數(shù),則()A.1 B.2 C. D.2.已知集合,則()A. B. C. D.3.在各項均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.54.已知函數(shù),若有2個零點,則實數(shù)的取值范圍為()A. B. C. D.5.正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為()A. B. C. D.6.德國數(shù)學家萊布尼茲(1646年-1716年)于1674年得到了第一個關于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學家?天文學家明安圖(1692年-1765年)為提高我國的數(shù)學研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.7.我國古代數(shù)學巨著《九章算術》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.18.設函數(shù)的導函數(shù),且滿足,若在中,,則()A. B. C. D.9.已知集合,,若,則()A.4 B.-4 C.8 D.-810.數(shù)列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.411.年部分省市將實行“”的新高考模式,即語文、數(shù)學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.12.已知與分別為函數(shù)與函數(shù)的圖象上一點,則線段的最小值為()A. B. C. D.6二、填空題:本題共4小題,每小題5分,共20分。13.如圖,兩個同心圓的半徑分別為和,為大圓的一條直徑,過點作小圓的切線交大圓于另一點,切點為,點為劣弧上的任一點(不包括兩點),則的最大值是__________.14.在的展開式中,所有的奇數(shù)次冪項的系數(shù)和為-64,則實數(shù)的值為__________.15.若實數(shù),滿足,則的最小值為__________.16.已知,則_____。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個極值點,求的取值范圍,并證明:.18.(12分)已知公差不為零的等差數(shù)列的前n項和為,,是與的等比中項.(1)求;(2)設數(shù)列滿足,,求數(shù)列的通項公式.19.(12分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.20.(12分)已知,,分別為內(nèi)角,,的對邊,且.(1)證明:;(2)若的面積,,求角.21.(12分)如圖中,為的中點,,,.(1)求邊的長;(2)點在邊上,若是的角平分線,求的面積.22.(10分)已知數(shù)列的前項和為,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)復數(shù)相等,可得,然后根據(jù)復數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復數(shù)模的計算,考驗計算,屬基礎題.2、C【解析】
解不等式得出集合A,根據(jù)交集的定義寫出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點睛】本題考查了解不等式與交集的運算問題,是基礎題.3、D【解析】
由對數(shù)運算法則和等比數(shù)列的性質(zhì)計算.【詳解】由題意.故選:D.【點睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則.掌握等比數(shù)列的性質(zhì)是解題關鍵.4、C【解析】
令,可得,要使得有兩個實數(shù)解,即和有兩個交點,結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數(shù)解,即和有兩個交點,,令,可得,當時,,函數(shù)在上單調(diào)遞增;當時,,函數(shù)在上單調(diào)遞減.當時,,若直線和有兩個交點,則.實數(shù)的取值范圍是.故選:C.【點睛】本題主要考查了根據(jù)零點求參數(shù)范圍,解題關鍵是掌握根據(jù)零點個數(shù)求參數(shù)的解法和根據(jù)導數(shù)求單調(diào)性的步驟,考查了分析能力和計算能力,屬于中檔題.5、D【解析】
如圖所示,設的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.6、B【解析】
執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結(jié)果,故選:B.【點睛】本題主要考查了循環(huán)結(jié)構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,得到程序框圖的計算功能是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.7、B【解析】
將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數(shù)列的實際應用,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.8、D【解析】
根據(jù)的結(jié)構形式,設,求導,則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數(shù)與函數(shù)的單調(diào)性,還考查了運算求解的能力,屬于中檔題.9、B【解析】
根據(jù)交集的定義,,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,,解得.故選:B.【點睛】本題考查交集的概念,屬于基礎題.10、D【解析】
用去換中的n,得,相加即可找到數(shù)列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數(shù)列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.11、B【解析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.12、C【解析】
利用導數(shù)法和兩直線平行性質(zhì),將線段的最小值轉(zhuǎn)化成切點到直線距離.【詳解】已知與分別為函數(shù)與函數(shù)的圖象上一點,可知拋物線存在某條切線與直線平行,則,設拋物線的切點為,則由可得,,所以切點為,則切點到直線的距離為線段的最小值,則.故選:C.【點睛】本題考查導數(shù)的幾何意義的應用,以及點到直線的距離公式的應用,考查轉(zhuǎn)化思想和計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,從而可得、,,,然后利用向量數(shù)量積的坐標運算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質(zhì)即可求解.【詳解】以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,則、,由,且,所以,所以,即又平分,所以,則,設,則,,所以,所以,,所以的最大值是.故答案為:【點睛】本題考查了向量數(shù)量積的坐標運算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數(shù)的性質(zhì),屬于中檔題.14、3或-1【解析】
設,分別令、,兩式相減即可得,即可得解.【詳解】設,令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.【點睛】本題考查了二項式定理的應用,考查了運算能力,屬于中檔題.15、【解析】
由約束條件先畫出可行域,然后求目標函數(shù)的最小值.【詳解】由約束條件先畫出可行域,如圖所示,由,即,當平行線經(jīng)過點時取到最小值,由可得,此時,所以的最小值為.故答案為.【點睛】本題考查了線性規(guī)劃的知識,解題的一般步驟為先畫出可行域,然后改寫目標函數(shù),結(jié)合圖形求出最值,需要掌握解題方法.16、【解析】
由已知求,再利用和角正切公式,求得,【詳解】因為所以cos因此.【點睛】本題考查了同角三角函數(shù)基本關系式與和角的正切公式。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【解析】
(1)當時,求得函數(shù)的導函數(shù)以及二階導函數(shù),由此求得的單調(diào)區(qū)間.(2)令求得,構造函數(shù),利用導數(shù)求得的單調(diào)區(qū)間、極值和最值,結(jié)合有兩個極值點,求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當時,遞減,當時,遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當時,所以當時,有一個極值點,當時,有兩個極值點,當時,沒有極值點,綜上因為是的兩個極值點,所以不妨設,得,因為在遞減,且,所以又所以【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導數(shù)研究函數(shù)的極值點,考查利用導數(shù)證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.18、(1);(2).【解析】
(1)根據(jù)題意,建立首項和公差的方程組,通過基本量即可寫出前項和;(2)由(1)中所求,結(jié)合累加法求得.【詳解】(1)由題意可得即又因為,所以,所以.(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點睛】本題考查等差數(shù)列通項公式和前項和的基本量的求解,涉及利用累加法求通項公式,屬綜合基礎題.19、(1)(2)【解析】
(1)通過討論的范圍,得到關于的不等式組,解出取并集即可.(2)去絕對值將函數(shù)寫成分段函數(shù)形式討論分段函數(shù)的單調(diào)性由恒成立求得結(jié)果.【詳解】解:(1)當時,,即或或解之得或,即不等式的解集為.(2)由題意得:當時為減函數(shù),顯然恒成立.當時,為增函數(shù),,當時,為減函數(shù),綜上所述:使恒成立的的取值范圍為.【點睛】本題考查了解絕對值不等式問題,考查不等式恒成立問題中求解參數(shù)問題,考查分類討論思想,轉(zhuǎn)化思想,屬于中檔題.20、(1)見解析;(2)【解析】
(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結(jié)論,得到,利用三角形的面積公式列方程,由此求得,進而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【點睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查運算求解能力,屬于中檔題.21、(1)10;(2).【解析】
(1)由題意可得cos∠ADB=﹣cos∠ADC,由已知利用余弦定理可得:9+BD2﹣52+9+BD2﹣16=0,進而解得BC的值.(2)由(1)可知△ADC為直角三角形,可求S△ADC6,S△ABC=2S△ADC=12,利用角平分線的性質(zhì)可得,根據(jù)S△ABC=S△BCE+S△ACE可求S△BCE的值.【詳解】(1)因為在邊上,所以,在和中由余弦定理,得,因為,,,,所以,所以,.所以邊的長為10.(2)由(1)知為直角三角形,所以,.因為是的角平分線,所以.所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物流園區(qū)建設項目合作開發(fā)合同
- 2024年版銷售人員全面工作合同樣本
- 2024年研發(fā)合作合同范本:新產(chǎn)品研發(fā)與推廣
- 義務教育數(shù)學課程標準(2022年版)題庫答案
- 2024年跨境電商銷售合同英文版版B版
- 2024年土特產(chǎn)區(qū)域代理合作協(xié)議范本3篇
- 2024年電子支付系統(tǒng)技術許可合同
- 2025年度軟件園辦公場地使用權及廣告發(fā)布合同3篇
- 2025年度二零二五年度邊坡防護施工與地質(zhì)勘察合同2篇
- 2024年股東權益共享協(xié)議書
- 0的認識和加、減法(說課稿)-2024-2025學年一年級上冊數(shù)學人教版(2024)001
- 2025年廣西旅發(fā)南國體育投資集團限公司招聘高頻重點提升(共500題)附帶答案詳解
- 2024-2025學年銅官山區(qū)數(shù)學三年級第一學期期末調(diào)研試題含解析
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之18:“7支持-7.1資源”(雷澤佳編制-2025B0)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之17:“6策劃-6.6合作”(雷澤佳編制-2025B0)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之16:“6策劃-6.5組織結(jié)構”(雷澤佳編制-2025B0)
- 全國英語教師賽課一等獎七年級上冊(人教2024年新編)《Unit 7 Happy Birthday》教學設計
- 碳排放監(jiān)測技術
- 2024年世界職業(yè)院校技能大賽高職組“關務實務組”賽項參考試題庫(含答案)
- 超市項目投標書模板
- 耐火材料行業(yè)競爭格局分析(如市場份額、競爭優(yōu)劣勢等)
評論
0/150
提交評論