版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將函數(shù)圖象上所有點(diǎn)向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,如果在區(qū)間上單調(diào)遞減,那么實(shí)數(shù)的最大值為()A. B. C. D.2.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件3.某地區(qū)高考改革,實(shí)行“3+2+1”模式,即“3”指語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學(xué)、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學(xué)科中任意選擇兩門學(xué)科,則一名學(xué)生的不同選科組合有()A.8種 B.12種 C.16種 D.20種4.的內(nèi)角的對(duì)邊分別為,若,則內(nèi)角()A. B. C. D.5.中國(guó)古典樂器一般按“八音”分類.這是我國(guó)最早按樂器的制造材料來(lái)對(duì)樂器進(jìn)行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.6.已知,是橢圓與雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.67.我國(guó)古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對(duì)的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.8.已知雙曲線的一條漸近線為,圓與相切于點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.9.已知集合,集合,則A. B.或C. D.10.對(duì)兩個(gè)變量進(jìn)行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.11.下列命題中,真命題的個(gè)數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.312.函數(shù)的最大值為,最小正周期為,則有序數(shù)對(duì)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)(為自然對(duì)數(shù)的底數(shù),),若函數(shù)恰有個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為__________________.14.(5分)已知,且,則的值是____________.15.一個(gè)袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),從中任意摸取3個(gè)小球,每個(gè)小球被取出的可能性相等,則取出的3個(gè)小球中數(shù)字最大的為4的概率是__.16.,則f(f(2))的值為____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線是曲線的切線.(1)求函數(shù)的解析式,(2)若,證明:對(duì)于任意,有且僅有一個(gè)零點(diǎn).18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值以及此時(shí)的直角坐標(biāo).19.(12分)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.20.(12分)已知的內(nèi)角,,的對(duì)邊分別為,,,且.(1)求;(2)若的面積為,,求的周長(zhǎng).21.(12分)已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長(zhǎng)為,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上的點(diǎn),且.證明:直線與圓相切;求面積的最小值.22.(10分)設(shè)橢圓的離心率為,圓與軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長(zhǎng)為.(1)求橢圓的方程;(2)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)條件先求出的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】將函數(shù)圖象上所有點(diǎn)向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則,設(shè),則當(dāng)時(shí),,,即,要使在區(qū)間上單調(diào)遞減,則得,得,即實(shí)數(shù)的最大值為,故選:B.【點(diǎn)睛】本小題主要考查三角函數(shù)圖象變換,考查根據(jù)三角函數(shù)的單調(diào)性求參數(shù),屬于中檔題.2、B【解析】
根據(jù)誘導(dǎo)公式化簡(jiǎn)再分析即可.【詳解】因?yàn)?所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點(diǎn)睛】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運(yùn)用,屬于基礎(chǔ)題.3、C【解析】
分兩類進(jìn)行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對(duì)應(yīng)的組合數(shù),即可求出結(jié)果.【詳解】若一名學(xué)生只選物理和歷史中的一門,則有種組合;若一名學(xué)生物理和歷史都選,則有種組合;因此共有種組合.故選C【點(diǎn)睛】本題主要考查兩個(gè)計(jì)數(shù)原理,熟記其計(jì)數(shù)原理的概念,即可求出結(jié)果,屬于??碱}型.4、C【解析】
由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點(diǎn)睛】本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵.5、B【解析】
分別求得所有基本事件個(gè)數(shù)和滿足題意的基本事件個(gè)數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點(diǎn)睛】本題考查古典概型概率問題的求解,關(guān)鍵是能夠利用組合的知識(shí)求得基本事件總數(shù)和滿足題意的基本事件個(gè)數(shù).6、C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡(jiǎn),結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的半實(shí)軸長(zhǎng)為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時(shí),取等號(hào).故選:C.【點(diǎn)睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.7、A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因?yàn)?,所以,由余弦定理,所以,由的面積公式得故選:A【點(diǎn)睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運(yùn)算求解的能力,屬于中檔題.8、D【解析】
由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.9、C【解析】
由可得,解得或,所以或,又,所以,故選C.10、D【解析】
作出四個(gè)函數(shù)的圖象及給出的四個(gè)點(diǎn),觀察這四個(gè)點(diǎn)在靠近哪個(gè)曲線.【詳解】如圖,作出A,B,C,D中四個(gè)函數(shù)圖象,同時(shí)描出題中的四個(gè)點(diǎn),它們?cè)谇€的兩側(cè),與其他三個(gè)曲線都離得很遠(yuǎn),因此D是正確選項(xiàng),故選:D.【點(diǎn)睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點(diǎn)越多,說(shuō)明擬合效果好.11、C【解析】
否命題與逆命題是等價(jià)命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價(jià)命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗(yàn)證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點(diǎn)睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個(gè)命題的真假時(shí),首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關(guān)的知識(shí)進(jìn)行判斷.(2)當(dāng)一個(gè)命題改寫成“若,則”的形式之后,判斷這個(gè)命題真假的方法:①若由“”經(jīng)過(guò)邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.12、B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
令,則,恰有四個(gè)解.由判斷函數(shù)增減性,求出最小值,列出相應(yīng)不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個(gè)解.有兩個(gè)解,由,可得在上單調(diào)遞減,在上單調(diào)遞增,則,可得.設(shè)的負(fù)根為,由題意知,,,,則,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)當(dāng)中的應(yīng)用,屬于難題.14、【解析】
由于,且,則,得,則.15、【解析】
由題,得滿足題目要求的情況有,①有一個(gè)數(shù)字4,另外兩個(gè)數(shù)字從1,2,3里面選和②有兩個(gè)數(shù)字4,另外一個(gè)數(shù)字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:①有一個(gè)數(shù)字4,另外兩個(gè)數(shù)字從1,2,3里面選,一共有種情況;②有兩個(gè)數(shù)字4,另外一個(gè)數(shù)字從1,2,3里面選,一共有種情況,又從中任意摸取3個(gè)小球,有種情況,所以取出的3個(gè)小球中數(shù)字最大的為4的概率.故答案為:【點(diǎn)睛】本題主要考查古典概型與組合的綜合問題,考查學(xué)生分析問題和解決問題的能力.16、1【解析】
先求f(1),再根據(jù)f(1)值所在區(qū)間求f(f(1)).【詳解】由題意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案為:1.【點(diǎn)睛】本題考查分段函數(shù)求值,考查對(duì)應(yīng)性以及基本求解能力.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見解析【解析】
(1)對(duì)函數(shù)求導(dǎo),并設(shè)切點(diǎn),利用點(diǎn)既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),可得至少有一個(gè)零點(diǎn).再證明零點(diǎn)的唯一性,即對(duì)函數(shù)求導(dǎo)得,對(duì)分和兩種情況討論,即可得答案.【詳解】(1)根據(jù)題意,,設(shè)直線與曲線相切于點(diǎn).根據(jù)題意,可得,解之得,所以.(2)由(1)可知,則當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),∴至少有一個(gè)零點(diǎn).∵,①若,則,在上單調(diào)遞增,∴有唯一零點(diǎn).②若令,得有兩個(gè)極值點(diǎn),∵,∴,∴.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.∴極大值為.,又,∴在(0,16)上單調(diào)遞增,∴,∴有唯一零點(diǎn).綜上可知,對(duì)于任意,有且僅有一個(gè)零點(diǎn).【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的運(yùn)用、利用導(dǎo)數(shù)證明函數(shù)的零點(diǎn)個(gè)數(shù),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意零點(diǎn)存在定理的運(yùn)用.18、(1):,:;(2),此時(shí).【解析】試題分析:(1)的普通方程為,的直角坐標(biāo)方程為;(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為到的距離當(dāng)且僅當(dāng)時(shí),取得最小值,最小值為,此時(shí)的直角坐標(biāo)為.試題解析:(1)的普通方程為,的直角坐標(biāo)方程為.(2)由題意,可設(shè)點(diǎn)的直角坐標(biāo)為,因?yàn)槭侵本€,所以的最小值即為到的距離的最小值,.當(dāng)且僅當(dāng)時(shí),取得最小值,最小值為,此時(shí)的直角坐標(biāo)為.考點(diǎn):坐標(biāo)系與參數(shù)方程.【方法點(diǎn)睛】參數(shù)方程與普通方程的互化:把參數(shù)方程化為普通方程,需要根據(jù)其結(jié)構(gòu)特征,選取適當(dāng)?shù)南麉⒎椒ǎR姷南麉⒎椒ㄓ校捍胂麉⒎?;加減消參法;平方和(差)消參法;乘法消參法;混合消參法等.把曲線的普通方程化為參數(shù)方程的關(guān)鍵:一是適當(dāng)選取參數(shù);二是確?;セ昂蠓匠痰牡葍r(jià)性.注意方程中的參數(shù)的變化范圍.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)條件由正弦定理得,又c=2a,所以,由余弦定理算出,進(jìn)而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計(jì)算即可.【詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,運(yùn)用二倍角公式和兩角和的正弦公式求值,考查了學(xué)生的運(yùn)算求解能力.20、(1);(2).【解析】
(1)利用正弦定理將目標(biāo)式邊化角,結(jié)合倍角公式,即可整理化簡(jiǎn)求得結(jié)果;(2)由面積公式,可以求得,再利用余弦定理,即可求得,結(jié)合即可求得周長(zhǎng).【詳解】(1)由題設(shè)得.由正弦定理得∵∴,所以或.當(dāng),(舍)故,解得.(2),從而.由余弦定理得.解得.∴.故三角形的周長(zhǎng)為.【點(diǎn)睛】本題考查由余弦定理解三角形,涉及面積公式,正弦的倍角公式,應(yīng)用正弦定理將邊化角,屬綜合性基礎(chǔ)題.21、證明見解析;1.【解析】
由題意可得橢圓的方程為,由點(diǎn)在直線上,且知的斜率必定存在,分類討論當(dāng)?shù)男甭蕿闀r(shí)和斜率不為時(shí)的情況列出相應(yīng)式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點(diǎn)在軸上,且,所以.所以橢圓的方程為.由點(diǎn)在直線上,且知的斜率必
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 長(zhǎng)沙商貿(mào)旅游職業(yè)技術(shù)學(xué)院《機(jī)械制圖與實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 配電網(wǎng)數(shù)據(jù)采集與分析
- 述職報(bào)告:技術(shù)領(lǐng)先之道模板
- 職業(yè)導(dǎo)論-2020年房地產(chǎn)經(jīng)紀(jì)人《職業(yè)導(dǎo)論》真題匯編
- 名畫欣賞與創(chuàng)作模板
- 公司年年會(huì)主持稿
- 二零二五年電子商務(wù)平臺(tái)入駐合作協(xié)議范本3篇
- 二零二五版北京車牌租賃市場(chǎng)推廣合作合同規(guī)范范本9篇
- 二零二五版基站建設(shè)場(chǎng)地使用權(quán)及通信網(wǎng)絡(luò)優(yōu)化合同2篇
- 吉林油田十二中2024-2025學(xué)年七年級(jí)上學(xué)期期末語(yǔ)文試卷(含答案)
- 分期還款協(xié)議書
- 小區(qū)住戶手冊(cè)范本
- 海康威視-視頻監(jiān)控原理培訓(xùn)教材課件
- 《鄭伯克段于鄢》-完整版課件
- 土壤肥料全套課件
- 畢業(yè)生延期畢業(yè)申請(qǐng)表
- 學(xué)校6S管理制度
- 肽的健康作用及應(yīng)用課件
- T.C--M-ONE效果器使用手冊(cè)
- 8小時(shí)等效A聲級(jí)計(jì)算工具
- 人教版七年級(jí)下冊(cè)數(shù)學(xué)計(jì)算題300道
評(píng)論
0/150
提交評(píng)論