版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的大致圖象是()A. B.C. D.2.已知函數(shù)的圖象與直線的相鄰交點間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.3.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內(nèi)的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.4.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個5.如圖,在中,,且,則()A.1 B. C. D.6.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足為.若,則()A. B. C. D.7.a(chǎn)為正實數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.18.若,則“”是“的展開式中項的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件9.對于函數(shù),若滿足,則稱為函數(shù)的一對“線性對稱點”.若實數(shù)與和與為函數(shù)的兩對“線性對稱點”,則的最大值為()A. B. C. D.10.已知數(shù)列的前n項和為,,且對于任意,滿足,則()A. B. C. D.11.“”是“函數(shù)的圖象關(guān)于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.記單調(diào)遞增的等比數(shù)列的前項和為,若,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在定義域R上的導(dǎo)函數(shù)為,若函數(shù)沒有零點,且,當在上與在R上的單調(diào)性相同時,則實數(shù)k的取值范圍是______.14.如圖,在梯形中,∥,分別是的中點,若,則的值為___________.15.在數(shù)列中,,,曲線在點處的切線經(jīng)過點,下列四個結(jié)論:①;②;③;④數(shù)列是等比數(shù)列;其中所有正確結(jié)論的編號是______.16.設(shè)隨機變量服從正態(tài)分布,若,則的值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某大學(xué)開學(xué)期間,該大學(xué)附近一家快餐店招聘外賣騎手,該快餐店提供了兩種日工資結(jié)算方案:方案規(guī)定每日底薪100元,外賣業(yè)務(wù)每完成一單提成2元;方案規(guī)定每日底薪150元,外賣業(yè)務(wù)的前54單沒有提成,從第55單開始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機選取一天,估計這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的概率;(2)從以往統(tǒng)計數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應(yīng)聘,四人選擇日工資方案相互獨立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請你為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替)18.(12分)如圖所示,在四棱錐中,底面是邊長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)(文科)求三棱錐的體積;(理科)求二面角的正切值.19.(12分)已知函數(shù),.(1)當時,求不等式的解集;(2)若函數(shù)的圖象與軸恰好圍成一個直角三角形,求的值.20.(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的極坐標方程和直線l的直角坐標方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.21.(12分)團購已成為時下商家和顧客均非常青睞的一種省錢、高校的消費方式,不少商家同時加入多家團購網(wǎng).現(xiàn)恰有三個團購網(wǎng)站在市開展了團購業(yè)務(wù),市某調(diào)查公司為調(diào)查這三家團購網(wǎng)站在本市的開展情況,從本市已加入了團購網(wǎng)站的商家中隨機地抽取了50家進行調(diào)查,他們加入這三家團購網(wǎng)站的情況如下圖所示.(1)從所調(diào)查的50家商家中任選兩家,求他們加入團購網(wǎng)站的數(shù)量不相等的概率;(2)從所調(diào)查的50家商家中任取兩家,用表示這兩家商家參加的團購網(wǎng)站數(shù)量之差的絕對值,求隨機變量的分布列和數(shù)學(xué)期望;(3)將頻率視為概率,現(xiàn)從市隨機抽取3家已加入團購網(wǎng)站的商家,記其中恰好加入了兩個團購網(wǎng)站的商家數(shù)為,試求事件“”的概率.22.(10分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數(shù)圖象,屬基礎(chǔ)題.2、A【解析】
由題知,利用求出,再根據(jù)題給定義,化簡求出的解析式,結(jié)合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【點睛】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關(guān)鍵是對新定義的理解.3、D【解析】
本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長度,的長度即點縱坐標,然后將點縱坐標帶入圓的方程即可得出點坐標,最后將點坐標帶入雙曲線方程即可得出結(jié)果?!驹斀狻扛鶕?jù)題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標為,將點縱坐標帶入圓的方程中可得,解得,,將點坐標帶入雙曲線中可得,化簡得,,,,故選D?!军c睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。4、B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結(jié)果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數(shù)的計算,當集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.5、C【解析】
由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點共線,又得到一個關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關(guān)知識,結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.6、C【解析】
需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設(shè)準線與軸的交點為,過點作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡即可【詳解】如圖,設(shè)準線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題7、B【解析】
,選B.8、B【解析】
求得的二項展開式的通項為,令時,可得項的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項展開式的通項為,令,即,則項的系數(shù)為,充分性成立;當?shù)恼归_式中項的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.9、D【解析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線性對稱點”,所以,故(當且僅當時取等號).又與為函數(shù)的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數(shù)函數(shù)的運算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達式是解題的關(guān)鍵,屬于中檔題.10、D【解析】
利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項公式,然后求解數(shù)列的和,判斷選項的正誤即可.【詳解】當時,.所以數(shù)列從第2項起為等差數(shù)列,,所以,,.,,.故選:.【點睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項公式的求法,考查轉(zhuǎn)化思想以及計算能力,是中檔題.11、A【解析】
先求解函數(shù)的圖象關(guān)于直線對稱的等價條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對稱,則,解得,故“”是“函數(shù)的圖象關(guān)于直線對稱”的充分不必要條件.故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學(xué)生邏輯推理,概念理解,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.12、C【解析】
先利用等比數(shù)列的性質(zhì)得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進而得到數(shù)列的通項和前項和,根據(jù)后兩個公式可得正確的選項.【詳解】因為為等比數(shù)列,所以,故即,由可得或,因為為遞增數(shù)列,故符合.此時,所以或(舍,因為為遞增數(shù)列).故,.故選C.【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可知:為上的單調(diào)函數(shù),則為定值,由指數(shù)函數(shù)的性質(zhì)可知為上的增函數(shù),則在,單調(diào)遞增,求導(dǎo),則恒成立,則,根據(jù)函數(shù)的正弦函數(shù)的性質(zhì)即可求得的取值范圍.【詳解】若方程無解,則或恒成立,所以為上的單調(diào)函數(shù),都有,則為定值,設(shè),則,易知為上的增函數(shù),,,又與的單調(diào)性相同,在上單調(diào)遞增,則當,,恒成立,當,時,,,,,,此時,故答案為:【點睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,正弦函數(shù)的性質(zhì),輔助角公式,考查計算能力,屬于中檔題.14、【解析】
建系,設(shè)設(shè),由可得,進一步得到的坐標,再利用數(shù)量積的坐標運算即可得到答案.【詳解】以A為坐標原點,AD為x軸建立如圖所示的直角坐標系,設(shè),則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點睛】本題考查利用坐標法求向量的數(shù)量積,考查學(xué)生的運算求解能力,是一道中檔題.15、①③④【解析】
先利用導(dǎo)數(shù)求得曲線在點處的切線方程,由此求得與的遞推關(guān)系式,進而證得數(shù)列是等比數(shù)列,由此判斷出四個結(jié)論中正確的結(jié)論編號.【詳解】∵,∴曲線在點處的切線方程為,則.∵,∴,則是首項為1,公比為的等比數(shù)列,從而,,.故所有正確結(jié)論的編號是①③④.故答案為:①③④【點睛】本小題主要考查曲線的切線方程的求法,考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查等比數(shù)列通項公式和前項和公式,屬于基礎(chǔ)題.16、1【解析】
由題得,解不等式得解.【詳解】因為,所以,所以c=1.故答案為1【點睛】本題主要考查正態(tài)分布的圖像和性質(zhì),意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0.4;(2);(3)應(yīng)選擇方案,理由見解析【解析】
(1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的頻率,即可估算其概率;(2)根據(jù)獨立重復(fù)試驗概率求法,先求得四人中有0人、1人選擇方案的概率,再由對立事件概率性質(zhì)即可求得至少有兩名騎手選擇方案的概率;(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計算兩種計算方式下的數(shù)學(xué)期望,并根據(jù)數(shù)學(xué)期望作出選擇.【詳解】(1)設(shè)事件為“隨機選取一天,這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單”.根據(jù)頻率分布直方圖可知快餐店的人均日外賣業(yè)務(wù)量不少于65單的頻率分別為,∵,∴估計為0.4.(2)設(shè)事件′為“甲、乙、丙、丁四名騎手中至少有兩名騎手選擇方案”,設(shè)事件,為“甲、乙、丙、丁四名騎手中恰有人選擇方案”,則,所以四名騎手中至少有兩名騎手選擇方案的概率為.(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,方案的日工資,方案的日工資,所以隨機變量的分布列為1601802002202402602800.050.050.20.30.20.150.05;同理,隨機變量的分布列為1501802302803300.30.30.20.150.05.∵,∴建議騎手應(yīng)選擇方案.【點睛】本題考查了頻率分布直方圖的簡單應(yīng)用,獨立重復(fù)試驗概率的求法,數(shù)學(xué)期望的求法并由期望作出方案選擇,屬于中檔題.18、(1)見解析(2)(文)(理)【解析】
(1)證明:取PD中點G,連結(jié)GF、AG,∵GF為△PDC的中位線,∴GF∥CD且,又AE∥CD且,∴GF∥AE且GF=AE,∴EFGA是平行四邊形,則EF∥AG,又EF不在平面PAD內(nèi),AG在平面PAD內(nèi),∴EF∥面PAD;(2)(文)解:取AD中點O,連結(jié)PO,∵面PAD⊥面ABCD,△PAD為正三角形,∴PO⊥面ABCD,且,又PC為面ABCD斜線,F(xiàn)為PC中點,∴F到面ABCD距離,故;(理)連OB交CE于M,可得Rt△EBC≌Rt△OAB,∴∠MEB=∠AOB,則∠MEB+∠MBE=90°,即OM⊥EC.連PM,又由(2)知PO⊥EC,可得EC⊥平面POM,則PM⊥EC,即∠PMO是二面角P-EC-D的平面角,在Rt△EBC中,,∴,∴,即二面角P-EC-D的正切值為.【方法點晴】本題主要考查線面平行的判定定理、二面角的求法、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.本題(1)是就是利用方法①證明的.19、(1)(2)【解析】
(1)當時,,由可得,(所以,解得,所以不等式的解集為.(2)由題可得,因為函數(shù)的圖象與軸恰好圍成一個直角三角形,所以,解得,當時,,函數(shù)的圖象與軸沒有交點,不符合題意;當時,,函數(shù)的圖象與軸恰好圍成一個直角三角形,符合題意.綜上,可得.20、(1):,直線:;(2).【解析】
(1)由消參法把參數(shù)方程化為普通方程,再由公式進行直角坐標方程與極坐標
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024棉紡織品行業(yè)論壇組織服務(wù)采購合同2篇
- 2025年企業(yè)合同電子歸檔與備份解決方案合同3篇
- 2024紅磚合同買賣合同范本
- 2024版土方施工承包合同
- 2025年度彩鋼瓦屋頂維修保養(yǎng)與更新改造合同3篇
- 二零二五年度軟件開發(fā)與集成技術(shù)服務(wù)合同范本3篇
- 二零二五年度體育賽事轉(zhuǎn)播權(quán)承辦合同2篇
- 二零二五年度文化創(chuàng)意產(chǎn)業(yè)抵押擔保合同3篇
- 2025年手車過戶買賣合同包含車輛貸款咨詢服務(wù)3篇
- 2025年度房地產(chǎn)大數(shù)據(jù)分析服務(wù)與包銷合同3篇
- 課題論文:引領(lǐng)新經(jīng)濟加速新質(zhì)生產(chǎn)力發(fā)展
- 《五年級上冊科學(xué)蘇教版F》期末檢測
- 政府部門勞動合同范例
- 河南省平頂山市郟縣2023-2024學(xué)年八年級下學(xué)期期末測試英語試題
- 2024年遼寧經(jīng)濟職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試題庫附答案
- JT∕T 1477-2023 系列2集裝箱 角件
- 啟明計劃工信部青年人才
- 乙酸鈉?;钒踩畔⒖?、周知卡及MSDS-
- 人工造林項目與其他單位的協(xié)調(diào)配合
- 居家服侍老人協(xié)議書
- 2024年-(多附件條款版)個人汽車租賃給公司合同電子版
評論
0/150
提交評論