新高考數(shù)學一輪復習分層提升練習第06練 函數(shù)的概念及其表示(含解析)_第1頁
新高考數(shù)學一輪復習分層提升練習第06練 函數(shù)的概念及其表示(含解析)_第2頁
新高考數(shù)學一輪復習分層提升練習第06練 函數(shù)的概念及其表示(含解析)_第3頁
新高考數(shù)學一輪復習分層提升練習第06練 函數(shù)的概念及其表示(含解析)_第4頁
新高考數(shù)學一輪復習分層提升練習第06練 函數(shù)的概念及其表示(含解析)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第06講函數(shù)的概念及其表示(精講)【A組

在基礎中考查功底】一、單選題1.下列各組函數(shù)為同一函數(shù)的是()①SKIPIF1<0與SKIPIF1<0;②SKIPIF1<0與SKIPIF1<0;③SKIPIF1<0與SKIPIF1<0.A.①② B.① C.② D.③【答案】B【分析】依次判斷函數(shù)的定義域和對應關系是否相等得到答案.【詳解】對①:SKIPIF1<0與SKIPIF1<0的定義域、對應關系均相同,是同一函數(shù);對②:由SKIPIF1<0,而SKIPIF1<0,對應關系不同,不是同一函數(shù);對③:SKIPIF1<0,SKIPIF1<0,對應關系不同,不是同一函數(shù).故選:B2.若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】定義域為SKIPIF1<0的取值范圍,結合同一對應法則下括號內范圍相同,求出答案.【詳解】由題意得SKIPIF1<0,故SKIPIF1<0,故函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.故選:D3.設函數(shù)SKIPIF1<0,若SKIPIF1<0,則實數(shù)SKIPIF1<0(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.2【答案】C【分析】先計算SKIPIF1<0,然后討論SKIPIF1<0的范圍,根據(jù)SKIPIF1<0直接計算即可.【詳解】由題可知:SKIPIF1<0①SKIPIF1<0,則SKIPIF1<0②SKIPIF1<0所以SKIPIF1<0故選:C4.若函數(shù)SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【分析】結合分段函數(shù)解析式依次判斷充分性和必要性即可.【詳解】當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,充分性成立;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,必要性不成立;SKIPIF1<0“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件.故選:A.5.下列函數(shù)中值域為SKIPIF1<0的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)函數(shù)的性質逐項進行分析驗證即可求解.【詳解】對于A,函數(shù)SKIPIF1<0,值域為SKIPIF1<0,故選項A正確;對于B,函數(shù)SKIPIF1<0,值域為SKIPIF1<0,故選項B錯誤;對于C,函數(shù)SKIPIF1<0,值域為SKIPIF1<0,故選項C錯誤;對于D,函數(shù)SKIPIF1<0,值域為SKIPIF1<0,故選項D錯誤,故選:A.6.高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有“數(shù)學王子”的稱號,他和阿基米德、牛頓并列為世界三大數(shù)學家.用其名字命名的“高斯函數(shù)”為:SKIPIF1<0,SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),如SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,已知SKIPIF1<0,則函數(shù)SKIPIF1<0的值域為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先進行分離,然后結合指數(shù)函數(shù)與反比例函數(shù)性質求出SKIPIF1<0的值域,結合已知定義即可求解.【詳解】因為SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,則SKIPIF1<0的值域SKIPIF1<0.故選:C.二、多選題7.下列函數(shù),值域包含SKIPIF1<0的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】對于A,可以通過分離常數(shù)法求函數(shù)的值域;對于B,可以將函數(shù)兩邊平方求函數(shù)的值域;對于C,利用函數(shù)的單調性求函數(shù)的值域;對于D,利用分段函數(shù)并結合函數(shù)的圖像求函數(shù)的值域;【詳解】對于A,由SKIPIF1<0,可得值域SKIPIF1<0,故A正確;對于B,函數(shù)定義域為:SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即原函數(shù)值域為SKIPIF1<0,故B錯誤;對于C,設SKIPIF1<0,SKIPIF1<0,易知它們在定義域內為增函數(shù),從而SKIPIF1<0在定義域為SKIPIF1<0上也為增函數(shù),所以當SKIPIF1<0時,函數(shù)SKIPIF1<0取最大值,最大值為SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域SKIPIF1<0,故C正確,對于D,由已知得:SKIPIF1<0,畫出函數(shù)的圖像,如圖:根據(jù)函數(shù)圖像可知:SKIPIF1<0定義域SKIPIF1<0,值域SKIPIF1<0,故D正確.故選:ACD.8.已知函數(shù)SKIPIF1<0,其值SKIPIF1<0不可能的是(

)A.-3 B.-1 C.1 D.3【答案】ABC【分析】利用基本不等式求SKIPIF1<0的值域,即可判斷.【詳解】當SKIPIF1<0時,SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時,等號成立;當SKIPIF1<0時,SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時,等號成立,則SKIPIF1<0;綜上所述:函數(shù)SKIPIF1<0的值域為SKIPIF1<0.顯然SKIPIF1<0,所以只有D選項可以取到.故選:ABC.三、填空題9.函數(shù)SKIPIF1<0的定義域是______.【答案】SKIPIF1<0【分析】使函數(shù)有意義應滿足分母不為0,真數(shù)恒大于0.【詳解】函數(shù)SKIPIF1<0有意義應滿足SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<010.若函數(shù)SKIPIF1<0在SKIPIF1<0上為嚴格增函數(shù),則實數(shù)SKIPIF1<0的取值范圍是__.【答案】SKIPIF1<0【分析】根據(jù)增函數(shù)的定義及所給條件列出關于實數(shù)SKIPIF1<0的不等式組,解之即可求得實數(shù)SKIPIF1<0的取值范圍.【詳解】函數(shù)SKIPIF1<0在SKIPIF1<0上為嚴格增函數(shù),可得SKIPIF1<0,解得SKIPIF1<0,故實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0,故答案為:SKIPIF1<011.已知SKIPIF1<0,則SKIPIF1<0__.【答案】SKIPIF1<0【分析】先令括號里1SKIPIF1<0t,求出SKIPIF1<0的范圍,將SKIPIF1<0用SKIPIF1<0表示,求出SKIPIF1<0的解析式,最后在將SKIPIF1<0換成SKIPIF1<0即可.【詳解】設SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0,SKIPIF1<0,(SKIPIF1<0),則SKIPIF1<0.故答案為:SKIPIF1<0四、解答題12.定義在R上的函數(shù)SKIPIF1<0對任意實數(shù)SKIPIF1<0都有SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的解析式;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0上是單調函數(shù),則求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)配方后,利用整體法求解函數(shù)解析式;(2)求出SKIPIF1<0的單調區(qū)間,與SKIPIF1<0比較,得到不等式,求出實數(shù)SKIPIF1<0的取值范圍.【詳解】(1)SKIPIF1<0,故函數(shù)SKIPIF1<0的解析式為SKIPIF1<0;(2)SKIPIF1<0在SKIPIF1<0上單調遞減,在SKIPIF1<0上單調遞增,因為SKIPIF1<0在SKIPIF1<0上是單調函數(shù),所以SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.【B組

在綜合中考查能力】一、單選題1.設函數(shù)SKIPIF1<0若SKIPIF1<0存在最小值,則實數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)分段函數(shù)解析式,討論SKIPIF1<0、SKIPIF1<0,結合一次函數(shù)、二次函數(shù)性質判斷SKIPIF1<0是否存在最小值,進而確定參數(shù)范圍.【詳解】由SKIPIF1<0,函數(shù)開口向上且對稱軸為SKIPIF1<0,且最小值為SKIPIF1<0,當SKIPIF1<0,則SKIPIF1<0在定義域上遞減,則SKIPIF1<0,此時,若SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0最小值為SKIPIF1<0;若SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0無最小值;當SKIPIF1<0,則SKIPIF1<0在定義域上為常數(shù),而SKIPIF1<0,故SKIPIF1<0最小值為SKIPIF1<0;當SKIPIF1<0,則SKIPIF1<0在定義域上遞增,且值域為SKIPIF1<0,故SKIPIF1<0無最小值.綜上,SKIPIF1<0.故選:B2.函數(shù)SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】令SKIPIF1<0,則SKIPIF1<0,可得最大值.【詳解】令SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,則當SKIPIF1<0時,取得最大值SKIPIF1<0.故選:C3.已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用換元法,令SKIPIF1<0,將問題進行轉化,利用分段函數(shù)的性質進行分段分析,結合函數(shù)圖像分析即可解決問題.【詳解】令SKIPIF1<0,則SKIPIF1<0即為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0無解,當SKIPIF1<0時,SKIPIF1<0即為SKIPIF1<0,在同一平面直角坐標系下畫出SKIPIF1<0和SKIPIF1<0的大致圖像如圖,由圖可得當且僅當SKIPIF1<0時,SKIPIF1<0,綜上所述,SKIPIF1<0的解為SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0,綜上所述,不等式SKIPIF1<0的解集是SKIPIF1<0.故選:D.二、多選題4.下列命題正確的是(

)A.函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0可能有兩個不同的交點B.函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0是相同函數(shù)C.若SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0D.若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為SKIPIF1<0【答案】CD【分析】根據(jù)函數(shù)的定義判斷A,根據(jù)函數(shù)定義域不同判斷B,根據(jù)對數(shù)函數(shù)的單調性判斷C,由抽象函數(shù)的定義域判斷D.【詳解】對于SKIPIF1<0,根據(jù)函數(shù)定義,對定義域內的任意一個SKIPIF1<0值,只有唯一的SKIPIF1<0值與之對應,SKIPIF1<0函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0只有一個交點,因此SKIPIF1<0錯;對于B,SKIPIF1<0中定義域是SKIPIF1<0,函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,定義域不相同,不是同一函數(shù),B錯;對于SKIPIF1<0,若SKIPIF1<0,即SKIPIF1<0,當SKIPIF1<0時,則SKIPIF1<0,此時SKIPIF1<0,當SKIPIF1<0時不成立,即SKIPIF1<0的取值范圍是SKIPIF1<0,因此SKIPIF1<0正確;對于SKIPIF1<0,令SKIPIF1<0,故SKIPIF1<0即函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,故D正確.故選:CD.5.已知函數(shù)SKIPIF1<0則以下說法正確的是(

)A.若SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0上的減函數(shù)B.若SKIPIF1<0,則SKIPIF1<0有最小值C.若SKIPIF1<0,則SKIPIF1<0的值域為SKIPIF1<0D.若SKIPIF1<0,則存在SKIPIF1<0,使得SKIPIF1<0【答案】ABC【分析】把選項中的SKIPIF1<0值分別代入函數(shù)SKIPIF1<0,利用此分段函數(shù)的單調性判斷各選項.【詳解】對于A,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調遞減,故A正確;對于B,若SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減,SKIPIF1<0,則SKIPIF1<0有最小值1,故B正確;對于C,若SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞增,SKIPIF1<0,則SKIPIF1<0的值域為SKIPIF1<0,故C正確;對于D,若SKIPIF1<0,SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,即當SKIPIF1<0時,SKIPIF1<0,所以不存在SKIPIF1<0,使得SKIPIF1<0,故D錯誤.故選:ABC三、填空題6.求函數(shù)SKIPIF1<0的值域為_________.【答案】SKIPIF1<0【分析】通過換元,配方,將原函數(shù)轉化為二次函數(shù)頂點式的形式,要注意的是原函數(shù)是給定定義域的,要在定義域內求值域.【詳解】令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0容易看出,該函數(shù)轉化為一個開口向下的二次函數(shù),對稱軸為SKIPIF1<0,SKIPIF1<0,所以該函數(shù)在SKIPIF1<0時取到最大值SKIPIF1<0,當SKIPIF1<0時,函數(shù)取得最小值SKIPIF1<0,所以函數(shù)SKIPIF1<0值域為SKIPIF1<0.故答案為:SKIPIF1<07.已知函數(shù)SKIPIF1<0,若對任意實數(shù)SKIPIF1<0,總存在實數(shù)SKIPIF1<0,使得SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是___.【答案】SKIPIF1<0【分析】首先分析各段函數(shù)的單調性,依題意只需函數(shù)SKIPIF1<0的值域為SKIPIF1<0,分SKIPIF1<0、SKIPIF1<0兩種情況討論,分別求出函數(shù)在各段的最大(?。┲?,即可得到不等式組,解得即可.【詳解】因為函數(shù)SKIPIF1<0在定義域SKIPIF1<0上單調遞增,函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞減,在SKIPIF1<0上單調遞增,要使對任意實數(shù)SKIPIF1<0,總存在實數(shù)SKIPIF1<0,使得SKIPIF1<0,即函數(shù)SKIPIF1<0的值域為SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0在SKIPIF1<0上單調遞增,在SKIPIF1<0上也單調遞增,則只需SKIPIF1<0,解得SKIPIF1<0;當SKIPIF1<0時SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0,則只需要SKIPIF1<0,解得SKIPIF1<0;綜上可得SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0四、解答題8.已知二次函數(shù)SKIPIF1<0的圖像與直線SKIPIF1<0只有一個交點,且滿足SKIPIF1<0,SKIPIF1<0.(1)求二次函數(shù)SKIPIF1<0的解析式;(2)若對任意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0恒成立,求實數(shù)m的范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0;【分析】(1)由已知可得二次函數(shù)的對稱軸和最值,設出函數(shù)解析式,再由SKIPIF1<0求得結論;(2)由SKIPIF1<0的單調性得出SKIPIF1<0的最小值,而關于SKIPIF1<0的不等式是一次(SKIPIF1<0時)的,只要SKIPIF1<0和SKIPIF1<0時成立即可,由此可解得SKIPIF1<0的范圍;【詳解】(1)因為SKIPIF1<0,所以由二次函數(shù)的性質可得SKIPIF1<0的圖像關于SKIPIF1<0對稱,又二次函數(shù)SKIPIF1<0的圖像與直線SKIPIF1<0只有一個交點,所以可設SKIPIF1<0又因為SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.(2)由(1)得SKIPIF1<0SKIPIF1<0在區(qū)間SKIPIF1<0單調遞增,SKIPIF1<0SKIPIF1<0即SKIPIF1<0在SKIPIF1<0時恒成立,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.9.已知函數(shù)SKIPIF1<0對任意的實數(shù)SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0成立.(1)求SKIPIF1<0,SKIPIF1<0的值;(2)求證:SKIPIF1<0(SKIPIF1<0);(3)若SKIPIF1<0,SKIPIF1<0(SKIPIF1<0,SKIPIF1<0均為常數(shù)),求SKIPIF1<0的值.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)證明見解析(3)SKIPIF1<0.【分析】(1)取SKIPIF1<0,SKIPIF1<0,代入計算得到答案.(2)SKIPIF1<0,根據(jù)SKIPIF1<0得到證明.(3)計算SKIPIF1<0,SKIPIF1<0,根據(jù)SKIPIF1<0,得到答案.【詳解】(1)令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0(SKIPIF1<0).(3)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.【C組

在創(chuàng)新中考查思維】一、單選題1.已知定義域為SKIPIF1<0的函數(shù)SKIPIF1<0滿足:①對任意SKIPIF1<0,SKIPIF1<0恒成立;②若SKIPIF1<0則SKIPIF1<0.以下選項表述不正確的是(

)A.SKIPIF1<0在SKIPIF1<0上是嚴格增函數(shù) B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.函數(shù)SKIPIF1<0的最小值為2【答案】A【分析】根據(jù)給定條件,探討函數(shù)SKIPIF1<0的性質,再舉例判斷A;取值計算判斷B,C;借助均值不等式求解判斷D作答.【詳解】任意SKIPIF1<0,SKIPIF1<0恒成立,SKIPIF1<0且SKIPIF1<0,假設SKIPIF1<0,則有SKIPIF1<0,顯然SKIPIF1<0,與“若SKIPIF1<0則SKIPIF1<0”矛盾,假設是錯的,因此當SKIPIF1<0且SKIPIF1<0時,SKIPIF1<0,取SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0,于是得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,對于A,函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,并且當SKIPIF1<0時,SKIPIF1<0,即函數(shù)SKIPIF1<0滿足給定條件,而此函數(shù)在SKIPIF1<0上是嚴格減函數(shù),A不正確;對于B,SKIPIF1<0,則SKIPIF1<0,B正確;對于C,SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,有SKIPIF1<0,又SKIPIF1<0,因此SKIPIF1<0,C正確;對于D,SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,當且僅當SKIPIF1<0,即SKIPIF1<0時取等號,所以函數(shù)SKIPIF1<0的最小值為2,D正確.故選:A【點睛】關鍵點睛:涉及由抽象的函數(shù)關系求函數(shù)值,根據(jù)給定的函數(shù)關系,在對應的區(qū)間上賦值即可.2.已知函數(shù)SKIPIF1<0,若存在區(qū)間SKIPIF1<0,使得函數(shù)SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)函數(shù)單調性,建立方程組,等價轉化為二次方程求根,建立不等式組,可得答案.【詳解】由函數(shù)SKIPIF1<0,顯然該函數(shù)在SKIPIF1<0上單調遞增,由函數(shù)SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,則SKIPIF1<0,等價于SKIPIF1<0存在兩個不相等且大于等于SKIPIF1<0的實數(shù)根,且SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0,解得SKIPIF1<0.故選:D.二、多選題3.下列說法中錯誤的為(

)A.若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0C.函數(shù)的SKIPIF1<0值域為:SKIPIF1<0D.已知SKIPIF1<0在SKIPIF1<0上是增函數(shù),則實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0【答案】BC【分析】根據(jù)復合函數(shù)定義域判斷A;根據(jù)湊項法求函數(shù)解析式即可判斷B;利用指數(shù)復合函數(shù)結合換元法與函數(shù)單調性求得函數(shù)值域,從而判斷C;根據(jù)分段函數(shù)的單調性列不等式求實數(shù)SKIPIF1<0的取值范圍,即可判斷D.【詳解】若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域滿足SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,故A正確;若SKIPIF1<0,則SKIPIF1<0,故B錯誤;對于函數(shù)的SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,該函數(shù)在SKIPIF1<0上遞增,所以其值域為SKIPIF1<0,故C錯誤;已知SKIPIF1<0在SKIPIF1<0上是增函數(shù),則SKIPIF1<0,解得SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0,故D正確.故選:BC.三、填空題4.已知函數(shù)SKIPIF1<0的值域為SKIPIF1<0,側實數(shù)SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【分析】令SKIPIF1<0、SKIPIF1<0,求出函數(shù)SKIPIF1<0的最小值及函數(shù)的單調性,再求出兩函數(shù)的交點坐標,最后對SKIPIF1<0分類討論,分別計算可得.【詳解】解:對于函數(shù)SKIPIF1<0,則SKIPIF1<0,當且僅當SKIPIF1<0時取等號,且函數(shù)在SKIPIF1<0上單調遞減,在SKIPIF1<0上單調遞增,對于函數(shù)SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,且函數(shù)在定義域上單調遞減,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0的兩個交點分別為SKIPIF1<0、SKIPIF1<0,則函數(shù)SKIPIF1<0與SKIPIF1<0的圖象如下所示:當SKIPIF1<0時,當SKIPIF1<0時SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,顯然SKIPIF1<0,此時函數(shù)SKIPIF1<0的值域不為SKIPIF1<0,不符合題意;當SKIPIF1<0時,當SKIPIF1<0時SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,此時SKIPIF1<0,即SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論