![2022-2023學(xué)年廣東省深圳市四校發(fā)展聯(lián)盟體數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁](http://file4.renrendoc.com/view14/M09/32/0A/wKhkGWa4PAuAUXt6AAHz4MWcSOE036.jpg)
![2022-2023學(xué)年廣東省深圳市四校發(fā)展聯(lián)盟體數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁](http://file4.renrendoc.com/view14/M09/32/0A/wKhkGWa4PAuAUXt6AAHz4MWcSOE0362.jpg)
![2022-2023學(xué)年廣東省深圳市四校發(fā)展聯(lián)盟體數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁](http://file4.renrendoc.com/view14/M09/32/0A/wKhkGWa4PAuAUXt6AAHz4MWcSOE0363.jpg)
![2022-2023學(xué)年廣東省深圳市四校發(fā)展聯(lián)盟體數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁](http://file4.renrendoc.com/view14/M09/32/0A/wKhkGWa4PAuAUXt6AAHz4MWcSOE0364.jpg)
![2022-2023學(xué)年廣東省深圳市四校發(fā)展聯(lián)盟體數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁](http://file4.renrendoc.com/view14/M09/32/0A/wKhkGWa4PAuAUXt6AAHz4MWcSOE0365.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),則復(fù)數(shù)的模等于()A. B. C. D.2.已知偶函數(shù)在區(qū)間內(nèi)單調(diào)遞減,,,,則,,滿足()A. B. C. D.3.在的展開式中,的系數(shù)為()A.-120 B.120 C.-15 D.154.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]5.已知雙曲線的右焦點為為坐標原點,以為直徑的圓與雙曲線的一條漸近線交于點及點,則雙曲線的方程為()A. B. C. D.6.某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時間,采用分層抽樣的方法從高生和初中生中抽取一個容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.7.若復(fù)數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.8.如圖,在等腰梯形中,,,,為的中點,將與分別沿、向上折起,使、重合為點,則三棱錐的外接球的體積是()A. B.C. D.9.給出個數(shù),,,,,,其規(guī)律是:第個數(shù)是,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,以此類推,要計算這個數(shù)的和.現(xiàn)已給出了該問題算法的程序框圖如圖,請在圖中判斷框中的①處和執(zhí)行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;10.在中,,,,點,分別在線段,上,且,,則().A. B. C.4 D.911.設(shè)命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.12.若,則的虛部是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某中學(xué)數(shù)學(xué)競賽培訓(xùn)班共有10人,分為甲、乙兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,若甲組5名同學(xué)成績的平均數(shù)為81,乙組5名同學(xué)成績的中位數(shù)為73,則x-y的值為________.14.函數(shù)的定義域為__________.15.已知函數(shù),則關(guān)于的不等式的解集為_______.16.已知為等比數(shù)列,是它的前項和.若,且與的等差中項為,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面是邊長為的菱形,,點分別是的中點.(1)求證:平面;(2)若,求直線與平面所成角的正弦值.18.(12分)以坐標原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,判斷直線為參數(shù))與圓的位置關(guān)系.19.(12分)已知函數(shù).(1)若曲線在處的切線為,試求實數(shù),的值;(2)當時,若有兩個極值點,,且,,若不等式恒成立,試求實數(shù)m的取值范圍.20.(12分)已知曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點,且,求的值.21.(12分)在平面直角坐標系中,將曲線(為參數(shù))通過伸縮變換,得到曲線,設(shè)直線(為參數(shù))與曲線相交于不同兩點,.(1)若,求線段的中點的坐標;(2)設(shè)點,若,求直線的斜率.22.(10分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用復(fù)數(shù)的除法運算法則進行化簡,再由復(fù)數(shù)模的定義求解即可.【詳解】因為,所以,由復(fù)數(shù)模的定義知,.故選:C【點睛】本題考查復(fù)數(shù)的除法運算法則和復(fù)數(shù)的模;考查運算求解能力;屬于基礎(chǔ)題.2、D【解析】
首先由函數(shù)為偶函數(shù),可得函數(shù)在內(nèi)單調(diào)遞增,再由,即可判定大小【詳解】因為偶函數(shù)在減,所以在上增,,,,∴.故選:D【點睛】本題考查函數(shù)的奇偶性和單調(diào)性,不同類型的數(shù)比較大小,應(yīng)找一個中間數(shù),通過它實現(xiàn)大小關(guān)系的傳遞,屬于中檔題.3、C【解析】
寫出展開式的通項公式,令,即,則可求系數(shù).【詳解】的展開式的通項公式為,令,即時,系數(shù)為.故選C【點睛】本題考查二項式展開的通項公式,屬基礎(chǔ)題.4、B【解析】
先求出,得到,再結(jié)合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關(guān)鍵,著重考查了計算能力,屬于基礎(chǔ)題.5、C【解析】
根據(jù)雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.6、B【解析】
利用某一層樣本數(shù)等于某一層的總體個數(shù)乘以抽樣比計算即可.【詳解】由題意,,解得.故選:B.【點睛】本題考查簡單隨機抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.7、C【解析】
由復(fù)數(shù)的幾何意義可得表示復(fù)數(shù),對應(yīng)的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復(fù)數(shù)的幾何意義可得,復(fù)數(shù)對應(yīng)的點為,復(fù)數(shù)對應(yīng)的點為,所以,其中,故選C【點睛】本題主要考查復(fù)數(shù)的幾何意義,由復(fù)數(shù)的幾何意義,將轉(zhuǎn)化為兩復(fù)數(shù)所對應(yīng)點的距離求值即可,屬于基礎(chǔ)題型.8、A【解析】
由題意等腰梯形中的三個三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長為1的正四面體,設(shè)是的中心,則平面,,,外接球球心必在高上,設(shè)外接球半徑為,即,∴,解得,球體積為.故選:A.【點睛】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體.9、A【解析】
要計算這個數(shù)的和,這就需要循環(huán)50次,這樣可以確定判斷語句①,根據(jù)累加最的變化規(guī)律可以確定語句②.【詳解】因為計算這個數(shù)的和,循環(huán)變量的初值為1,所以步長應(yīng)該為1,故判斷語句①應(yīng)為,第個數(shù)是,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,這樣可以確定語句②為,故本題選A.【點睛】本題考查了補充循環(huán)結(jié)構(gòu),正確讀懂題意是解本題的關(guān)鍵.10、B【解析】
根據(jù)題意,分析可得,由余弦定理求得的值,由可得結(jié)果.【詳解】根據(jù)題意,,則在中,又,則則則則故選:B【點睛】此題考查余弦定理和向量的數(shù)量積運算,掌握基本概念和公式即可解決,屬于簡單題目.11、C【解析】
命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當時,,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.12、D【解析】
通過復(fù)數(shù)的乘除運算法則化簡求解復(fù)數(shù)為:的形式,即可得到復(fù)數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點睛】本題考查復(fù)數(shù)的代數(shù)形式的混合運算,復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)莖葉圖中的數(shù)據(jù),結(jié)合平均數(shù)與中位數(shù)的概念,求出x、y的值.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),得:甲班5名同學(xué)成績的平均數(shù)為,解得;又乙班5名同學(xué)的中位數(shù)為73,則;.故答案為:.【點睛】本題考查莖葉圖及根據(jù)莖葉圖計算中位數(shù)、平均數(shù),考查數(shù)據(jù)分析能力,屬于簡單題.14、【解析】
根據(jù)函數(shù)成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數(shù)有意義,則,即.則定義域為:.故答案為:【點睛】本題主要考查定義域的求解,要熟練掌握張建函數(shù)成立的條件.15、【解析】
判斷的奇偶性和單調(diào)性,原不等式轉(zhuǎn)化為,運用單調(diào)性,可得到所求解集.【詳解】令,易知函數(shù)為奇函數(shù),在R上單調(diào)遞增,,即,∴∴,即x>故答案為:【點睛】本題考查函數(shù)的奇偶性和單調(diào)性的運用:解不等式,考查轉(zhuǎn)化思想和運算能力,屬于中檔題.16、【解析】
設(shè)等比數(shù)列的公比為,根據(jù)題意求出和的值,進而可求得和的值,利用等比數(shù)列求和公式可求得的值.【詳解】由等比數(shù)列的性質(zhì)可得,,由于與的等差中項為,則,則,,,,,因此,.故答案為:.【點睛】本題考查等比數(shù)列求和,解答的關(guān)鍵就是等比數(shù)列的公比,考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)取的中點,連接,通過證明,即可證得;(2)建立空間直角坐標系,利用向量的坐標表示即可得解.【詳解】(1)證明:取的中點,連接.是的中點,,又,四邊形是平行四邊形.,又平面平面,平面.(2),,同理可得:,又平面.連接,設(shè),則,建立空間直角坐標系.設(shè)平面的法向量為,則,則,取.直線與平面所成角的正弦值為.【點睛】此題考查證明線面平行,求線面角的大小,關(guān)鍵在于熟練掌握線面平行的證明方法,法向量法求線面角的基本方法,根據(jù)公式準確計算.18、直線與圓C相切.【解析】
首先把直線和圓轉(zhuǎn)換為直角坐標方程,進一步利用點到直線的距離的應(yīng)用求出直線和圓的位置關(guān)系.【詳解】直線為參數(shù)),轉(zhuǎn)換為直角坐標方程為.圓轉(zhuǎn)換為直角坐標方程為,轉(zhuǎn)換為標準形式為,所以圓心到直線,的距離.直線與圓C相切.【點睛】本題考查的知識要點:參數(shù)方程極坐標方程和直角坐標方程之間的轉(zhuǎn)換,直線與圓的位置關(guān)系式的應(yīng)用,點到直線的距離公式的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.19、(1);(2).【解析】
(1)根據(jù)題意,求得的值,根據(jù)切點在切線上以及斜率等于,構(gòu)造方程組求得的值;(2)函數(shù)有兩個極值點,等價于方程的兩個正根,,不等式恒成立,等價于恒成立,,令,求出導(dǎo)數(shù),判斷單調(diào)性,即可得到的范圍,即的范圍.【詳解】(1)由題可知,,,聯(lián)立可得.(2)當時,,,有兩個極值點,,且,,是方程的兩個正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是減函數(shù),,故.【點睛】該題考查的是有關(guān)導(dǎo)數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,函數(shù)的極值點的個數(shù),構(gòu)造新函數(shù),應(yīng)用導(dǎo)數(shù)研究函數(shù)的值域得到參數(shù)的取值范圍,屬于較難題目.20、(1),(2)0【解析】
(1)分別把兩曲線參數(shù)方程中的參數(shù)消去,即可得到普通方程;(2)把直線的參數(shù)方程代入的普通方程,化為關(guān)于的一元二次方程,再由根與系數(shù)的關(guān)系及此時的幾何意義求解.【詳解】(1)由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得;由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得,即.(2)把為參數(shù))代入,得.,..解得:,即,滿足△..【點睛】本題考查參數(shù)方程化普通方程,特別是直線參數(shù)方程中參數(shù)的幾何意義的應(yīng)用,是中檔題.21、(1);(2).【解析】
(1)由l參數(shù)方程與橢圓方程聯(lián)立可得A、B兩點參數(shù)和,再利用M點的參數(shù)為A、B兩點參數(shù)和的一半即可求M的坐標;(2)利用直線參數(shù)方程的幾何意義得到,再利用計算即可,但要注意判別式還要大于0.【詳解】(1)由已知,曲線的參數(shù)方程為(為參數(shù)),其普通方程為,當時,將(為參數(shù))代入得,設(shè)直線l上A、B兩點所對應(yīng)的參數(shù)為,中點M所對應(yīng)的參數(shù)為,則,所以的坐標為;(2)將代入得,則,因為即,所以,故,由得,所以.【點睛】本題考查了伸縮變換、參數(shù)方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學(xué)生的計算能力,是一道中檔題.22、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度綠色環(huán)保報社美縫施工及維護一體化服務(wù)合同
- 軟件安全開發(fā)標準作業(yè)指導(dǎo)書
- IT服務(wù)管理規(guī)范作業(yè)指導(dǎo)書
- 光伏發(fā)電組件銷售合同
- 樓盤銷售代理合同大曰金地產(chǎn)
- 補充協(xié)議能簽幾次
- 金融行業(yè)合規(guī)經(jīng)營操作手冊
- 桶裝水和學(xué)校簽的合同
- 木材加工廠出租合同
- 勞務(wù)派遣合同書樣本
- 呼吸道疾病的健康宣教
- 動物生產(chǎn)與流通環(huán)節(jié)檢疫(動物防疫檢疫課件)
- 裝配式建筑預(yù)制構(gòu)件安裝-預(yù)制構(gòu)件的吊裝
- 2024年山東泰安市泰山財金投資集團有限公司招聘筆試參考題庫含答案解析
- 上海天文館分析
- 中醫(yī)睡眠養(yǎng)生中心方案
- 生活中的邏輯學(xué)
- 大學(xué)生返家鄉(xiāng)社會實踐報告
- 初中生物中考真題(合集)含答案
- 《醫(yī)學(xué)免疫學(xué)實驗》課件
- C139客戶開發(fā)管理模型
評論
0/150
提交評論