2022屆廣東省廣州市重點中學高考考前提分數(shù)學仿真卷含解析_第1頁
2022屆廣東省廣州市重點中學高考考前提分數(shù)學仿真卷含解析_第2頁
2022屆廣東省廣州市重點中學高考考前提分數(shù)學仿真卷含解析_第3頁
2022屆廣東省廣州市重點中學高考考前提分數(shù)學仿真卷含解析_第4頁
2022屆廣東省廣州市重點中學高考考前提分數(shù)學仿真卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.72.已知集合,,若AB,則實數(shù)的取值范圍是()A. B. C. D.3.已知等差數(shù)列的公差為,前項和為,,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,若對任意的恒成立,則實數(shù)().A.6 B.5 C.4 D.34.如圖是某地區(qū)2000年至2016年環(huán)境基礎設施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎設施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎設施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎設施的投資額比2004年的投資額翻了兩番;D.為了預測該地區(qū)2019年的環(huán)境基礎設施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據(jù)該模型預測該地區(qū)2019的環(huán)境基礎設施投資額為256.5億元.5.復數(shù)().A. B. C. D.6.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.7.已知復數(shù),則的虛部為()A.-1 B. C.1 D.8.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.9.已知數(shù)列對任意的有成立,若,則等于()A. B. C. D.10.設集合,,若,則的取值范圍是()A. B. C. D.11.已知,是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于,兩點,若,則△的內(nèi)切圓的半徑為()A. B. C. D.12.已知傾斜角為的直線與直線垂直,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若關于x的方程有且只有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是_______________.14.(5分)在平面直角坐標系中,過點作傾斜角為的直線,已知直線與圓相交于兩點,則弦的長等于____________.15.為激發(fā)學生團結(jié)協(xié)作,敢于拼搏,不言放棄的精神,某校高三5個班進行班級間的拔河比賽.每兩班之間只比賽1場,目前(—)班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場.則目前(五)班已經(jīng)參加比賽的場次為__________.16.在中,,點是邊的中點,則__________,________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的圖象在處的切線方程是.(1)求的值;(2)若函數(shù),討論的單調(diào)性與極值;(3)證明:.18.(12分)設點,動圓經(jīng)過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設,,求證:為定值.19.(12分)設函數(shù).(1)求不等式的解集;(2)若的最小值為,且,求的最小值.20.(12分)如圖,三棱柱的所有棱長均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.21.(12分)在平面直角坐標系中,曲線,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線、的極坐標方程;(2)在極坐標系中,射線與曲線,分別交于、兩點(異于極點),定點,求的面積22.(10分)設數(shù)陣,其中、、、.設,其中,且.定義變換為“對于數(shù)陣的每一行,若其中有或,則將這一行中每個數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經(jīng)過變換得到,再將經(jīng)過變換得到、,以此類推,最后將經(jīng)過變換得到”,記數(shù)陣中四個數(shù)的和為.(1)若,寫出經(jīng)過變換后得到的數(shù)陣;(2)若,,求的值;(3)對任意確定的一個數(shù)陣,證明:的所有可能取值的和不超過.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎題2.D【解析】

先化簡,再根據(jù),且AB求解.【詳解】因為,又因為,且AB,所以.故選:D【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.3.C【解析】

若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時的n即可.【詳解】由已知,,又三角形有一個內(nèi)角為,所以,,解得或(舍),故,當時,取得最大值,所以.故選:C.【點睛】本題考查等差數(shù)列前n項和的最值問題,考查學生的計算能力,是一道基礎題.4.D【解析】

根據(jù)圖像所給的數(shù)據(jù),對四個選項逐一進行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【點睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進行預測的方法,屬于基礎題.5.A【解析】試題分析:,故選A.【考點】復數(shù)運算【名師點睛】復數(shù)代數(shù)形式的四則運算的法則是進行復數(shù)運算的理論依據(jù),加減運算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數(shù)化.6.D【解析】

根據(jù)題意畫出幾何關系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關系求得與等量關系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關系如下圖所示:設四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.7.A【解析】

分子分母同乘分母的共軛復數(shù)即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復數(shù)的除法運算,考查學生運算能力,是一道容易題.8.B【解析】

設,則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結(jié)果.【詳解】設,則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應用,屬于基礎題.9.B【解析】

觀察已知條件,對進行化簡,運用累加法和裂項法求出結(jié)果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數(shù)列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數(shù)列中的方法,并能熟練運用對應方法求解.10.C【解析】

由得出,利用集合的包含關系可得出實數(shù)的取值范圍.【詳解】,且,,.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用集合的包含關系求參數(shù),考查計算能力,屬于基礎題.11.B【解析】

設左焦點的坐標,由AB的弦長可得a的值,進而可得雙曲線的方程,及左右焦點的坐標,進而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個三角形的面積之和可得內(nèi)切圓的半徑.【詳解】由雙曲線的方程可設左焦點,由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長為設內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【點睛】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應用,屬于中檔題.12.D【解析】

傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關系,同角三角函數(shù)基本關系式即可得出結(jié)果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點睛】本題考查了相互垂直的直線斜率之間的關系,同角三角函數(shù)基本關系式,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

畫出函數(shù)的圖象,再畫的圖象,求出一個交點時的的值,然后平行移動可得有兩個交點時的的范圍.【詳解】函數(shù)的圖象如圖所示:因為方程有且只有兩個不相等的實數(shù)根,所以圖象與直線有且只有兩個交點即可,當過點時兩個函數(shù)有一個交點,即時,與函數(shù)有一個交點,由圖象可知,直線向下平移后有兩個交點,可得,故答案為:.【點睛】本題主要考查了方程的跟與函數(shù)的圖象交點的轉(zhuǎn)化,數(shù)形結(jié)合的思想,屬于中檔題.14.【解析】

方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設,則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.15.2【解析】

根據(jù)比賽場次,分析,畫出圖象,計算結(jié)果.【詳解】畫圖所示,可知目前(五)班已經(jīng)賽了2場.故答案為:2【點睛】本題考查推理,計數(shù)原理的圖形表示,意在考查數(shù)形結(jié)合分析問題的能力,屬于基礎題型.16.2【解析】

根據(jù)正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數(shù)量積求解即可.【詳解】中,,,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數(shù)量積的應用,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值;(3)見解析.【解析】

(1)切點既在切線上又在曲線上得一方程,再根據(jù)斜率等于該點的導數(shù)再列一方程,解方程組即可;(2)先對求導數(shù),根據(jù)導數(shù)判斷和求解即可.(3)把證明轉(zhuǎn)化為證明,然后證明極小值大于極大值即可.【詳解】解:(1)函數(shù)的定義域為由已知得,則,解得.(2)由題意得,則.當時,,所以單調(diào)遞減,當時,,所以單調(diào)遞增,所以,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值.(3)要證成立,只需證成立.令,則,當時,單調(diào)遞增,當時,單調(diào)遞減,所以的極大值為,即由(2)知,時,,且的最小值點與的最大值點不同,所以,即.所以,.【點睛】知識方面,考查建立方程組求未知數(shù),利用導數(shù)求函數(shù)的單調(diào)區(qū)間和極值以及不等式的證明;能力方面,考查推理論證能力、分析問題和解決問題的能力以及運算求解能力;試題難度大.18.(1);(2)見解析.【解析】

(1)已知點軌跡是以為焦點,直線為準線的拋物線,由此可得曲線的方程;(2)設直線方程為,,則,設,由直線方程與拋物線方程聯(lián)立消元應用韋達定理得,,由,,用橫坐標表示出,然后計算,并代入,可得結(jié)論.【詳解】(1)設動圓圓心,由拋物線定義知:點軌跡是以為焦點,直線為準線的拋物線,設其方程為,則,解得.∴曲線的方程為;(2)證明:設直線方程為,,則,設,由得,①,則,,②,由,,得,,整理得,,∴,代入②得:.【點睛】本題考查求曲線方程,考查拋物線的定義,考查直線與拋物線相交問題中的定值問題.解題方法是設而不求的思想方法,即設交點坐標,設直線方程,直線方程代入拋物線(或圓錐曲線)方程得一元二次方程,應用韋達定理得,,代入題中其他條件所求式子中化簡變形.19.(1)或(2)最小值為.【解析】

(1)討論,,三種情況,分別計算得到答案.(2)計算得到,再利用均值不等式計算得到答案.【詳解】(1)當時,由,解得;當時,由,解得;當時,由,解得.所以所求不等式的解集為或.(2)根據(jù)函數(shù)圖像知:當時,,所以.因為,由,可知,所以,當且僅當,,時,等號成立.所以的最小值為.【點睛】本題考查了解絕對值不等式,函數(shù)最值,均值不等式,意在考查學生對于不等式,函數(shù)知識的綜合應用.20.(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)連接交于點,連接,由于平面,得出,根據(jù)線線位置關系得出,利用線面垂直的判定和性質(zhì)得出,結(jié)合條件以及面面垂直的判定,即可證出平面平面;(Ⅱ)根據(jù)題意,建立空間直角坐標系,利用空間向量法分別求出和平面的法向量,利用空間向量線面角公式,即可求出直線與平面所成角的余弦值.【詳解】解:(Ⅰ)證明:連接交于點,連接,則平面平面,平面,,為的中點,為的中點,平面,,平面,平面,平面平面(Ⅱ)建立如圖所示空間直角坐標系,設則,,,,,設平面的法向量為,則,取得,設直線與平面所成角為,直線與平面所成角的余弦值為.【點睛】本題考查面面垂直的判定以及利用空間向量法求線面角的余弦值,考查空間想象能力和推理能力.21.(1),;(2).【解析】

(1)先把參數(shù)方程化成普通方程,再利用極坐標的公式把普通方程化成極坐標方程;(2)先利用極坐標求出弦長,再求高,最后求的面積.【詳解】(1)曲線的極坐標方程為:,因為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論