版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024-2025學(xué)年新教材高中數(shù)學(xué)第3章排列、組合與二項(xiàng)式定理3.1排列與組合3.1.1第1課時(shí)基本計(jì)數(shù)原理教案新人教B版選擇性必修第二冊(cè)主備人備課成員教學(xué)內(nèi)容分析本節(jié)課的主要教學(xué)內(nèi)容是排列與組合。教材的章節(jié)為高中數(shù)學(xué)第3章“排列、組合與二項(xiàng)式定理”中的3.1“排列與組合”。具體內(nèi)容為3.1.1第1課時(shí)“基本計(jì)數(shù)原理教案”。
教學(xué)內(nèi)容與學(xué)生已有知識(shí)的聯(lián)系:學(xué)生在之前的學(xué)習(xí)中已經(jīng)掌握了有理數(shù)的乘方和整數(shù)的乘方,這為理解排列與組合的概念打下了基礎(chǔ)。同時(shí),學(xué)生也學(xué)習(xí)了函數(shù)、集合等數(shù)學(xué)概念,這些知識(shí)都將有助于學(xué)生對(duì)排列與組合的理解和應(yīng)用。核心素養(yǎng)目標(biāo)分析本節(jié)課的核心素養(yǎng)目標(biāo)主要包括邏輯推理、數(shù)學(xué)建模和數(shù)學(xué)抽象。
首先,通過(guò)學(xué)習(xí)排列與組合的概念和原理,學(xué)生能夠培養(yǎng)邏輯推理能力,能夠從已知的事實(shí)出發(fā),推導(dǎo)出排列與組合的規(guī)律,理解其內(nèi)在邏輯關(guān)系。
其次,學(xué)生能夠通過(guò)實(shí)例分析和問(wèn)題解決,掌握排列與組合在實(shí)際問(wèn)題中的應(yīng)用,培養(yǎng)數(shù)學(xué)建模的能力,能夠?qū)?shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,并利用排列與組合的知識(shí)進(jìn)行解決。
最后,通過(guò)探索排列與組合的性質(zhì)和規(guī)律,學(xué)生能夠抽象出數(shù)學(xué)模型,培養(yǎng)數(shù)學(xué)抽象的能力,能夠從具體的事物中抽象出一般的規(guī)律,并能夠運(yùn)用這些規(guī)律進(jìn)行推理和解決問(wèn)題。學(xué)習(xí)者分析1.學(xué)生已經(jīng)掌握了哪些相關(guān)知識(shí):在開(kāi)始本節(jié)課之前,學(xué)生應(yīng)該已經(jīng)掌握了有理數(shù)的乘方、整數(shù)的乘方、函數(shù)、集合等數(shù)學(xué)概念。這些知識(shí)將為學(xué)生理解排列與組合的概念打下基礎(chǔ)。同時(shí),學(xué)生也應(yīng)該具備一定程度的問(wèn)題解決能力和數(shù)學(xué)思維能力,這將有助于他們?cè)趯W(xué)習(xí)排列與組合時(shí)進(jìn)行更好的理解和應(yīng)用。
2.學(xué)生的學(xué)習(xí)興趣、能力和學(xué)習(xí)風(fēng)格:學(xué)生在學(xué)習(xí)數(shù)學(xué)時(shí),可能對(duì)具有實(shí)際應(yīng)用背景的知識(shí)更感興趣。因此,在教學(xué)過(guò)程中,教師可以通過(guò)引入生活中的實(shí)例和問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)興趣。在學(xué)習(xí)能力方面,學(xué)生可能存在差異,有的學(xué)生可能對(duì)抽象的數(shù)學(xué)概念掌握得較好,而有的學(xué)生可能更擅長(zhǎng)具體的操作和實(shí)踐。因此,教師在教學(xué)時(shí)應(yīng)注重因材施教,通過(guò)不同的教學(xué)方法和教學(xué)素材,滿足不同學(xué)生的學(xué)習(xí)需求。在學(xué)習(xí)風(fēng)格方面,有的學(xué)生可能喜歡通過(guò)自主探索學(xué)習(xí),而有的學(xué)生可能更傾向于通過(guò)與他人合作學(xué)習(xí)。教師可以根據(jù)學(xué)生的不同學(xué)習(xí)風(fēng)格,采取相應(yīng)的教學(xué)策略,促進(jìn)學(xué)生的學(xué)習(xí)效果。
3.學(xué)生可能遇到的困難和挑戰(zhàn):在學(xué)習(xí)排列與組合時(shí),學(xué)生可能對(duì)排列與組合的概念和原理理解起來(lái)有困難,尤其是對(duì)于一些抽象的數(shù)學(xué)模型和規(guī)律的把握。同時(shí),學(xué)生可能在將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,并利用排列與組合的知識(shí)進(jìn)行解決時(shí)遇到挑戰(zhàn)。此外,學(xué)生可能對(duì)排列與組合在不同情境下的應(yīng)用有一定的疑惑,不知道如何靈活運(yùn)用所學(xué)的知識(shí)。針對(duì)這些困難和挑戰(zhàn),教師需要通過(guò)耐心講解、舉例說(shuō)明、引導(dǎo)思考等方式,幫助學(xué)生理解和掌握排列與組合的知識(shí),并能夠應(yīng)用到實(shí)際問(wèn)題中。同時(shí),教師可以組織學(xué)生進(jìn)行討論和交流,讓學(xué)生相互借鑒和學(xué)習(xí),共同克服困難,提高學(xué)習(xí)效果。學(xué)具準(zhǔn)備Xxx課型新授課教法學(xué)法講授法課時(shí)第一課時(shí)師生互動(dòng)設(shè)計(jì)二次備課教學(xué)資源1.軟硬件資源:多媒體投影儀、計(jì)算機(jī)、白板、黑板、粉筆、教學(xué)卡片、計(jì)算器、數(shù)學(xué)模型等。
2.課程平臺(tái):學(xué)校提供的教學(xué)管理系統(tǒng),如Moodle或Blackboard,用于發(fā)布教學(xué)材料、作業(yè)和測(cè)試。
3.信息化資源:教學(xué)PPT、視頻講座、在線習(xí)題庫(kù)、數(shù)學(xué)軟件(如GeoGebra)、排列與組合的案例研究等。
4.教學(xué)手段:講演法、互動(dòng)討論、小組合作、案例分析、問(wèn)題解決、實(shí)踐操作、反饋與評(píng)價(jià)等。
5.輔助材料:教科書(shū)、輔導(dǎo)書(shū)、練習(xí)冊(cè)、在線資源鏈接、實(shí)際問(wèn)題收集材料等。
6.評(píng)估工具:課堂練習(xí)、小測(cè)驗(yàn)、作業(yè)、項(xiàng)目作業(yè)、自我評(píng)估表、同伴評(píng)估等。教學(xué)過(guò)程設(shè)計(jì)1.導(dǎo)入新課(5分鐘)
目標(biāo):引起學(xué)生對(duì)排列與組合的興趣,激發(fā)其探索欲望。
過(guò)程:
開(kāi)場(chǎng)提問(wèn):“你們知道排列與組合是什么嗎?它們?cè)跀?shù)學(xué)和生活中有什么應(yīng)用?”
展示一些實(shí)際問(wèn)題場(chǎng)景,如舉辦活動(dòng)時(shí)的座位安排、商品組合優(yōu)惠等,讓學(xué)生初步感受排列與組合的應(yīng)用。
簡(jiǎn)短介紹排列與組合的基本概念和重要性,為接下來(lái)的學(xué)習(xí)打下基礎(chǔ)。
2.排列與組合基礎(chǔ)知識(shí)講解(10分鐘)
目標(biāo):讓學(xué)生了解排列與組合的基本概念、組成部分和原理。
過(guò)程:
講解排列與組合的定義,包括其主要組成元素或結(jié)構(gòu)。
詳細(xì)介紹排列與組合的計(jì)算方法和原理,使用圖表或示意圖幫助學(xué)生理解。
3.排列與組合案例分析(20分鐘)
目標(biāo):通過(guò)具體案例,讓學(xué)生深入了解排列與組合的特性和重要性。
過(guò)程:
選擇幾個(gè)典型的排列與組合案例進(jìn)行分析。
詳細(xì)介紹每個(gè)案例的背景、特點(diǎn)和意義,讓學(xué)生全面了解排列與組合的多樣性或復(fù)雜性。
引導(dǎo)學(xué)生思考這些案例對(duì)實(shí)際生活或?qū)W習(xí)的影響,以及如何應(yīng)用排列與組合解決實(shí)際問(wèn)題。
4.學(xué)生小組討論(10分鐘)
目標(biāo):培養(yǎng)學(xué)生的合作能力和解決問(wèn)題的能力。
過(guò)程:
將學(xué)生分成若干小組,每組選擇一個(gè)與排列與組合相關(guān)的主題進(jìn)行深入討論。
小組內(nèi)討論該主題的現(xiàn)狀、挑戰(zhàn)以及可能的解決方案。
每組選出一名代表,準(zhǔn)備向全班展示討論成果。
5.課堂展示與點(diǎn)評(píng)(15分鐘)
目標(biāo):鍛煉學(xué)生的表達(dá)能力,同時(shí)加深全班對(duì)排列與組合的認(rèn)識(shí)和理解。
過(guò)程:
各組代表依次上臺(tái)展示討論成果,包括主題的現(xiàn)狀、挑戰(zhàn)及解決方案。
其他學(xué)生和教師對(duì)展示內(nèi)容進(jìn)行提問(wèn)和點(diǎn)評(píng),促進(jìn)互動(dòng)交流。
教師總結(jié)各組的亮點(diǎn)和不足,并提出進(jìn)一步的建議和改進(jìn)方向。
6.課堂小結(jié)(5分鐘)
目標(biāo):回顧本節(jié)課的主要內(nèi)容,強(qiáng)調(diào)排列與組合的重要性和意義。
過(guò)程:
簡(jiǎn)要回顧本節(jié)課的學(xué)習(xí)內(nèi)容,包括排列與組合的基本概念、組成部分、案例分析等。
強(qiáng)調(diào)排列與組合在現(xiàn)實(shí)生活或?qū)W習(xí)中的價(jià)值和作用,鼓勵(lì)學(xué)生進(jìn)一步探索和應(yīng)用排列與組合。
布置課后作業(yè):讓學(xué)生撰寫(xiě)一篇關(guān)于排列與組合的應(yīng)用案例報(bào)告,以鞏固學(xué)習(xí)效果。知識(shí)點(diǎn)梳理本節(jié)課的主要教學(xué)內(nèi)容是排列與組合,涉及到高中數(shù)學(xué)第3章“排列、組合與二項(xiàng)式定理”中的3.1“排列與組合”。具體內(nèi)容為3.1.1第1課時(shí)“基本計(jì)數(shù)原理教案”。以下是對(duì)本節(jié)課知識(shí)點(diǎn)的詳細(xì)梳理:
1.排列與組合的定義:
-排列:從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有可能的順序排列的個(gè)數(shù)。
-組合:從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有可能的非順序排列的個(gè)數(shù)。
2.排列的計(jì)算公式:
-排列數(shù)公式:A(n,m)=n!/(n-m)!,其中n!表示n的階乘。
-特殊情況的排列數(shù):
-A(n,n)=n!
-A(n,1)=n
-A(n,0)=1
3.組合的計(jì)算公式:
-組合數(shù)公式:C(n,m)=A(n,m)/m!,其中m!表示m的階乘。
-特殊情況的組合數(shù):
-C(n,n)=1
-C(n,1)=n
-C(n,0)=1
4.排列與組合的性質(zhì):
-排列與組合是相互獨(dú)立的,即從n個(gè)元素中先進(jìn)行排列再進(jìn)行組合的結(jié)果與先進(jìn)行組合再進(jìn)行排列的結(jié)果相同。
-排列與組合滿足交換律,即對(duì)于任意兩個(gè)元素a和b,A(n,m)(a,b)=A(n,m)(b,a)和C(n,m)(a,b)=C(n,m)(b,a)。
-排列與組合滿足結(jié)合律,即對(duì)于任意三個(gè)元素a、b和c,A(n,m)(a,b,c)=A(n,m)(a,b)A(n,m)(c)和C(n,m)(a,b,c)=C(n,m)(a,b)C(n,m)(c)。
5.排列與組合的應(yīng)用:
-活動(dòng)安排:如聚會(huì)座位安排、比賽選手排序等。
-商品組合優(yōu)惠:如買(mǎi)一送一、打折組合套餐等。
-問(wèn)題解決:如求解排列組合問(wèn)題、計(jì)算概率等。
6.實(shí)際問(wèn)題轉(zhuǎn)化為排列組合問(wèn)題的方法:
-確定元素:將問(wèn)題中的每個(gè)選項(xiàng)或物品看作是一個(gè)元素。
-確定排列組合方式:根據(jù)問(wèn)題的要求,確定是進(jìn)行排列還是組合。
-計(jì)算排列組合數(shù):根據(jù)排列與組合的公式,計(jì)算出所有可能的排列或組合數(shù)。
-得出結(jié)果:根據(jù)計(jì)算出的排列組合數(shù),得出問(wèn)題的解答。典型例題講解例題1:排列問(wèn)題
題目:從5本不同的書(shū)中隨機(jī)抽取3本進(jìn)行閱讀,求不同的抽取方法有多少種?
解答:
這是一個(gè)排列問(wèn)題,因?yàn)轭}目要求書(shū)的順序。
使用排列數(shù)公式A(n,m)=n!/(n-m)!,其中n=5,m=3。
計(jì)算得到A(5,3)=5!/(5-3)!=(5×4×3×2×1)/(2×1)=60。
所以,不同的抽取方法有60種。
例題2:組合問(wèn)題
題目:一個(gè)班級(jí)有20名學(xué)生,從中選出10名參加數(shù)學(xué)競(jìng)賽,求不同的選法有多少種?
解答:
這是一個(gè)組合問(wèn)題,因?yàn)轭}目不要求學(xué)生的順序。
使用組合數(shù)公式C(n,m)=A(n,m)/m!,其中n=20,m=10。
計(jì)算得到C(20,10)=A(20,10)/10!=(20×19×18×...×11)/(10×9×8×...×1)。
所以,不同的選法有大約1.21×10^12種。
例題3:排列與組合混合問(wèn)題
題目:一個(gè)籃子里有5個(gè)蘋(píng)果,3個(gè)橘子和2個(gè)香蕉,如果隨機(jī)取出2個(gè)水果,求取出的水果既有蘋(píng)果又有橘子的方法有多少種?
解答:
這個(gè)問(wèn)題涉及到排列與組合的混合。
我們可以先計(jì)算出所有可能的取法,即A(10,2)。
然后計(jì)算出只有蘋(píng)果或只有橘子的取法,分別是A(5,2)和A(3,2)。
最后,用總的取法減去只有蘋(píng)果和只有橘子的取法,即A(10,2)-(A(5,2)+A(3,2))。
計(jì)算得到A(10,2)=10!/(10-2)!=45,A(5,2)=5!/(5-2)!=10,A(3,2)=3!/(3-2)!=3。
所以,取出的水果既有蘋(píng)果又有橘子的方法有45-(10+3)=22種。
例題4:排列的應(yīng)用問(wèn)題
題目:一個(gè)班級(jí)有6名女生和4名男生,班主任要從這些學(xué)生中選出3名班干部,要求女生至少占一名,求選法的種數(shù)?
解答:
這個(gè)問(wèn)題是排列的應(yīng)用問(wèn)題。
我們可以分為三種情況:一女兩男、兩女一男、三女。
計(jì)算每種情況的選法種數(shù),然后相加。
一女兩男的情況有C(6,1)×C(4,2)種,兩女一男的情況有C(6,2)×C(4,1)種,三女的情況有C(6,3)種。
計(jì)算得到一女兩男的選法有6×6=36種,兩女一男的選法有15×4=60種,三女的選法有20種。
所以,總的選法種數(shù)為36+60+20=116種。
例題5:組合的應(yīng)用問(wèn)題
題目:一個(gè)密碼鎖由4位數(shù)字組成,數(shù)字范圍是0到9,求設(shè)置一個(gè)密碼的方法有多少種?
解答:
這是一個(gè)組合的應(yīng)用問(wèn)題,因?yàn)槊艽a的順序不重要。
每位數(shù)字都有10種選擇(0-9),所以總的組合方法是10×10×10×10=10^4種。
所以,設(shè)置一個(gè)密碼的方法有10^4種。教學(xué)反思今天我上了一節(jié)關(guān)于排列與組合的課,總體來(lái)說(shuō),學(xué)生們表現(xiàn)得非常積極,參與度很高。在講解基本概念和公式時(shí),我發(fā)現(xiàn)學(xué)生們對(duì)于排列的計(jì)算公式A(n,m)=n!/(n-m)!和組合的計(jì)算公式C(n,m)=A(n,m)/m!理解得比較到位,能夠正確應(yīng)用這些公式來(lái)解決問(wèn)題。
在解決排列與組合混合問(wèn)題時(shí),我發(fā)現(xiàn)學(xué)生們對(duì)于將問(wèn)題轉(zhuǎn)化為排列與組合的計(jì)算有些困難。這個(gè)問(wèn)題可能是因?yàn)閷W(xué)生們對(duì)于排列與組合的混合應(yīng)用還不夠熟練,需要更多的練習(xí)來(lái)加強(qiáng)理解和應(yīng)用能力。
在課堂討論和小組活動(dòng)中,我發(fā)現(xiàn)學(xué)生們能夠積極參與,提出自己的想法和解決方案。這表明學(xué)生們對(duì)于排列與組合的應(yīng)用有一定的理解和掌握,同時(shí)也能夠通過(guò)合作來(lái)解決問(wèn)題。
在課堂小結(jié)和課后作業(yè)布置中,我強(qiáng)調(diào)了排列與組合在實(shí)際生活中的應(yīng)用,鼓勵(lì)學(xué)生們進(jìn)一步探索和應(yīng)用排列與組合的知識(shí)。學(xué)生們對(duì)于排列與組合在實(shí)際生活中的應(yīng)用表示出濃厚的興趣,希望能夠?qū)⑺鶎W(xué)知識(shí)應(yīng)用到實(shí)際問(wèn)題中。板書(shū)設(shè)計(jì)1.排列與組合的定義:
-排列:從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有可能的順序排列的個(gè)數(shù)。
-組合:從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有可能的非順序排列的個(gè)數(shù)。
2.排列的計(jì)算公式:
-排列數(shù)公式:A(n,m)=n!/(n-m)!,其中n!表示n的階乘。
-特殊情況:
-A(n,n)=n!
-A(n,1)=n
-A(n,0)=1
3.組合的計(jì)算公式:
-組合數(shù)公式:C(n,m)=A(n,m)/m!,其中m!表示m的階乘。
-特殊情況:
-C(n,n)=1
-C(n,1)=n
-C(n,0)=1
4.排列與組合的性質(zhì):
-排列與組合是相互獨(dú)立的。
-排列與組合滿足交換律。
-排列與組合滿足結(jié)合律。
5.排列與組合的應(yīng)用:
-活動(dòng)安排
-商品組合優(yōu)惠
-問(wèn)題解決
6.實(shí)際問(wèn)題轉(zhuǎn)化為排列組合問(wèn)題的方法:
-確定元素
-確定排列組合方式
-計(jì)算排列組合數(shù)
-得出結(jié)果教學(xué)評(píng)價(jià)與反饋1.課堂表現(xiàn):學(xué)生們?cè)谡n堂上表現(xiàn)積極,對(duì)于排列與組合的概念和公式能夠快速理解并應(yīng)用。大部分學(xué)生能夠跟上教師的思路,積極參與課堂討論。然而,仍有部分學(xué)生在理解和應(yīng)用排列與組合公式時(shí)存在困難,需要進(jìn)一步的指導(dǎo)和練習(xí)。
2.小組討論成果展示:各小組在討論中表現(xiàn)出了良好的合作和溝通能力。他們能夠針對(duì)給定的問(wèn)題提出自己的觀點(diǎn)和解決方案,并通過(guò)小組討論來(lái)達(dá)成共識(shí)。在展示中,學(xué)生們能夠清晰地表達(dá)自己的觀點(diǎn),同時(shí)也能夠接受其他小組的反饋和建議。
3.隨堂測(cè)試:在隨堂測(cè)試中,大部分學(xué)生能夠正確應(yīng)用排列與組合的公式來(lái)解決問(wèn)題。學(xué)生們?cè)诮鉀Q實(shí)際問(wèn)題時(shí)能夠靈活運(yùn)用所學(xué)知識(shí),表現(xiàn)出較好的理解和應(yīng)用能力。然而,仍有部分學(xué)生在解決特定類(lèi)型的問(wèn)題時(shí)出現(xiàn)錯(cuò)誤,需要進(jìn)一步的練習(xí)和指導(dǎo)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 居家保姆雇傭合同書(shū)
- 2025年統(tǒng)編版八年級(jí)地理上冊(cè)月考試卷
- 2025年滬教新版高二數(shù)學(xué)上冊(cè)階段測(cè)試試卷
- 2025年粵人版八年級(jí)歷史下冊(cè)階段測(cè)試試卷
- 遵義職業(yè)技術(shù)學(xué)院《西方法律思想史(B)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年牛棚養(yǎng)殖廢棄物回收與處理服務(wù)合同4篇
- 二零二五版門(mén)窗行業(yè)標(biāo)準(zhǔn)化安裝服務(wù)合同4篇
- 二零二五版苗木種植與森林防火技術(shù)服務(wù)合同3篇
- 2025年度新型木門(mén)材料研發(fā)與市場(chǎng)拓展合作合同3篇
- 二零二五版木托盤(pán)生產(chǎn)設(shè)備進(jìn)出口合同4篇
- 七年級(jí)英語(yǔ)閱讀理解55篇(含答案)
- 臨床常見(jiàn)操作-灌腸
- 基于視覺(jué)的工業(yè)缺陷檢測(cè)技術(shù)
- 案例分析:美國(guó)紐約高樓防火設(shè)計(jì)課件
- 老客戶維護(hù)方案
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(yíng)(吳洪貴)任務(wù)一 用戶定位與選題
- 萬(wàn)科物業(yè)管理公司全套制度(2016版)
- 2021年高考化學(xué)真題和模擬題分類(lèi)匯編專(zhuān)題20工業(yè)流程題含解析
- 工作證明模板下載免費(fèi)
- (完整word)長(zhǎng)沙胡博士工作室公益發(fā)布新加坡SM2考試物理全真模擬試卷(附答案解析)
- 機(jī)械點(diǎn)檢員職業(yè)技能知識(shí)考試題庫(kù)與答案(900題)
評(píng)論
0/150
提交評(píng)論