版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.集合,,則()A. B. C. D.2.已知數(shù)列,,,…,是首項(xiàng)為8,公比為得等比數(shù)列,則等于()A.64 B.32 C.2 D.43.若,滿足約束條件,則的取值范圍為()A. B. C. D.4.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.5.雙曲線的漸近線方程為()A. B.C. D.6.拋物線的焦點(diǎn)為,準(zhǔn)線為,,是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)線段的中點(diǎn)在上的投影為,則的最大值是()A. B. C. D.7.已知雙曲線的左,右焦點(diǎn)分別為,O為坐標(biāo)原點(diǎn),P為雙曲線在第一象限上的點(diǎn),直線PO,分別交雙曲線C的左,右支于另一點(diǎn),且,則雙曲線的離心率為()A. B.3 C.2 D.8.如圖所示,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某多面體的三視圖,則該幾何體的各個(gè)面中最大面的面積為()A. B. C. D.9.函數(shù)的圖象大致為A. B. C. D.10.已知集合,,則()A. B.C.或 D.11.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.12.已知函數(shù),則下列結(jié)論中正確的是①函數(shù)的最小正周期為;②函數(shù)的圖象是軸對(duì)稱圖形;③函數(shù)的極大值為;④函數(shù)的最小值為.A.①③ B.②④C.②③ D.②③④二、填空題:本題共4小題,每小題5分,共20分。13.已知兩點(diǎn),,若直線上存在點(diǎn)滿足,則實(shí)數(shù)滿足的取值范圍是__________.14.已知向量,,若,則________.15.設(shè)P為有公共焦點(diǎn)的橢圓與雙曲線的一個(gè)交點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則______________.16.如圖,在體積為V的圓柱中,以線段上的點(diǎn)O為項(xiàng)點(diǎn),上下底面為底面的兩個(gè)圓錐的體積分別為,,則的值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角的對(duì)邊分別為,且.(1)求;(2)若,點(diǎn)為邊的中點(diǎn),且,求的面積.18.(12分)如圖,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點(diǎn)為的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在線段上是否存在一點(diǎn),使直線與平面所成的角正弦值為,若存在求出的長,若不存在說明理由.19.(12分)已知橢圓()經(jīng)過點(diǎn),離心率為,、、為橢圓上不同的三點(diǎn),且滿足,為坐標(biāo)原點(diǎn).(1)若直線、的斜率都存在,求證:為定值;(2)求的取值范圍.20.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若存在滿足不等式,求實(shí)數(shù)的取值范圍.21.(12分)設(shè)函數(shù)f(x)=x2?4xsinx?4cosx.(1)討論函數(shù)f(x)在[?π,π]上的單調(diào)性;(2)證明:函數(shù)f(x)在R上有且僅有兩個(gè)零點(diǎn).22.(10分)若不等式在時(shí)恒成立,則的取值范圍是__________.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
計(jì)算,再計(jì)算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.2.A【解析】
根據(jù)題意依次計(jì)算得到答案.【詳解】根據(jù)題意知:,,故,,.故選:.【點(diǎn)睛】本題考查了數(shù)列值的計(jì)算,意在考查學(xué)生的計(jì)算能力.3.B【解析】
根據(jù)約束條件作出可行域,找到使直線的截距取最值得點(diǎn),相應(yīng)坐標(biāo)代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當(dāng)直線經(jīng)過點(diǎn)時(shí),取得最小值-5;經(jīng)過點(diǎn)時(shí),取得最大值5,故.故選:B【點(diǎn)睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.4.D【解析】
先根據(jù)三視圖還原幾何體是一個(gè)四棱錐,根據(jù)三視圖的數(shù)據(jù),計(jì)算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個(gè)四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點(diǎn)睛】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.5.A【解析】
將雙曲線方程化為標(biāo)準(zhǔn)方程為,其漸近線方程為,化簡(jiǎn)整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用.6.B【解析】
試題分析:設(shè)在直線上的投影分別是,則,,又是中點(diǎn),所以,則,在中,所以,即,所以,故選B.考點(diǎn):拋物線的性質(zhì).【名師點(diǎn)晴】在直線與拋物線的位置關(guān)系問題中,涉及到拋物線上的點(diǎn)到焦點(diǎn)的距離,焦點(diǎn)弦長,拋物線上的點(diǎn)到準(zhǔn)線(或與準(zhǔn)線平行的直線)的距離時(shí),常??紤]用拋物線的定義進(jìn)行問題的轉(zhuǎn)化.象本題弦的中點(diǎn)到準(zhǔn)線的距離首先等于兩點(diǎn)到準(zhǔn)線距離之和的一半,然后轉(zhuǎn)化為兩點(diǎn)到焦點(diǎn)的距離,從而與弦長之間可通過余弦定理建立關(guān)系.7.D【解析】
本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計(jì)算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對(duì)角線平分,可得四邊形為平行四邊形,結(jié)合,故對(duì)三角形運(yùn)用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點(diǎn)睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.8.B【解析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個(gè)正方體中的三棱錐,最大面的表面邊長為的等邊三角形,故其面積為,故選B.【點(diǎn)睛】本題考查了幾何體的三視圖問題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問題.9.D【解析】
由題可得函數(shù)的定義域?yàn)?,因?yàn)椋院瘮?shù)為奇函數(shù),排除選項(xiàng)B;又,,所以排除選項(xiàng)A、C,故選D.10.D【解析】
首先求出集合,再根據(jù)補(bǔ)集的定義計(jì)算可得;【詳解】解:∵,解得∴,∴.故選:D【點(diǎn)睛】本題考查補(bǔ)集的概念及運(yùn)算,一元二次不等式的解法,屬于基礎(chǔ)題.11.A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.12.D【解析】
因?yàn)?,所以①不正確;因?yàn)椋?,,所以,所以函?shù)的圖象是軸對(duì)稱圖形,②正確;易知函數(shù)的最小正周期為,因?yàn)楹瘮?shù)的圖象關(guān)于直線對(duì)稱,所以只需研究函數(shù)在上的極大值與最小值即可.當(dāng)時(shí),,且,令,得,可知函數(shù)在處取得極大值為,③正確;因?yàn)椋?,所以函?shù)的最小值為,④正確.故選D.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
問題轉(zhuǎn)化為求直線與圓有公共點(diǎn)時(shí),的取值范圍,利用數(shù)形結(jié)合思想能求出結(jié)果.【詳解】解:直線,點(diǎn),,直線上存在點(diǎn)滿足,的軌跡方程是.如圖,直線與圓有公共點(diǎn),圓心到直線的距離:,解得.實(shí)數(shù)的取值范圍為.故答案為:.【點(diǎn)睛】本題主要考查直線方程、圓、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,屬于中檔題.14.10【解析】
根據(jù)垂直得到,代入計(jì)算得到答案.【詳解】,則,解得,故,故.故答案為:.【點(diǎn)睛】本題考查了根據(jù)向量垂直求參數(shù),向量模,意在考查學(xué)生的計(jì)算能力.15.【解析】設(shè)根據(jù)橢圓的幾何性質(zhì)可得,根據(jù)雙曲線的幾何性質(zhì)可得,,即故答案為16.【解析】
根據(jù)圓柱的體積為,以及圓錐的體積公式,計(jì)算即得.【詳解】由題得,,得.故答案為:【點(diǎn)睛】本題主要考查圓錐體的體積,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進(jìn)行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因?yàn)闉榈闹芯€,所以,兩邊同時(shí)平方可得,故.因?yàn)?所以.所以的面積.【點(diǎn)睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時(shí)也考查了向量在解三角形中的運(yùn)用,屬于中檔題.18.(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)線段上是存在一點(diǎn),,使直線與平面所成的角正弦值為.【解析】
(Ⅰ)取中點(diǎn),連結(jié)、,推導(dǎo)出四邊形是平行四邊形,從而,由此能證明平面;(Ⅱ)取中點(diǎn),連結(jié),,推導(dǎo)出平面,,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值;(Ⅲ)假設(shè)在線段上是存在一點(diǎn),使直線與平面所成的角正弦值為,設(shè).利用向量法能求出結(jié)果.【詳解】(Ⅰ)證明:取中點(diǎn),連結(jié)、,是邊長為2的等邊三角形,,,,點(diǎn)為的中點(diǎn),,四邊形是平行四邊形,,平面,平面,平面.(Ⅱ)解:取中點(diǎn),連結(jié),,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點(diǎn)為的中點(diǎn),平面,,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,1,,,0,,,1,,,0,,,,,,0,,,,,設(shè)平面的法向量,,,則,取,得,,,設(shè)平面的法向量,,,則,取,得,設(shè)二面角的平面角為,則.二面角的余弦值為.(Ⅲ)解:假設(shè)在線段上是存在一點(diǎn),使直線與平面所成的角正弦值為,設(shè).則,,,,,,平面的法向量,,解得,線段上是存在一點(diǎn),,使直線與平面所成的角正弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查滿足正弦值的點(diǎn)是否存在的判斷與求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.19.(1)證明見解析;(2).【解析】
(1)首先根據(jù)題中條件求出橢圓方程,設(shè)、、點(diǎn)坐標(biāo),根據(jù)利用坐標(biāo)表示出即可得證;(2)設(shè)直線方程,再與橢圓方程聯(lián)立利用韋達(dá)定理表示出,即可求出范圍.【詳解】(1)依題有,所以橢圓方程為.設(shè),,,由為的重心,;又因?yàn)?,,,,?)當(dāng)?shù)男甭什淮嬖跁r(shí):,,,代入橢圓得,,,當(dāng)?shù)男甭蚀嬖跁r(shí):設(shè)直線為,這里,由,,根據(jù)韋達(dá)定理有,,,故,代入橢圓方程有,又因?yàn)椋C上,的范圍是.【點(diǎn)睛】本題主要考查了橢圓方程的求解,三角形重心的坐標(biāo)關(guān)系,直線與橢圓所交弦長,屬于一般題.20.(Ⅰ)或.(Ⅱ)【解析】
(Ⅰ)分類討論解絕對(duì)值不等式得到答案.(Ⅱ)討論和兩種情況,得到函數(shù)單調(diào)性,得到只需,代入計(jì)算得到答案.【詳解】(Ⅰ)當(dāng)時(shí),不等式為,變形為或或,解集為或.(Ⅱ)當(dāng)時(shí),,由此可知在單調(diào)遞減,在單調(diào)遞增,當(dāng)時(shí),同樣得到在單調(diào)遞減,在單調(diào)遞增,所以,存在滿足不等式,只需,即,解得.【點(diǎn)睛】本題考查了解絕對(duì)值不等式,不等式存在性問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.21.見解析【解析】
(1)f(x)=2x?4xcosx?4sinx+4sinx=,由f(x)=1,x∈[?π,π]得x=1或或.當(dāng)x變化時(shí),f(x)和f(x)的變化情況如下表:x1f(x)?1+1?1+f(x)單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增所以f(x)在區(qū)間,上單調(diào)遞減,在區(qū)間,上單調(diào)遞增.(2)由(1)得極大值為f(1)=?4;極小值為f()=f()<f(1)<1.又f(π)=f(?π)=π2+4>1,所以f(x)在,上各有一個(gè)零點(diǎn).顯然x∈(π,2π)時(shí),?4xsinx>1,x2?4cosx>1,所以f(x)>1;x∈[2π,+∞)時(shí),f(x)≥x2?4x?4>62?4×6?4=8>1,所以f(x)在(π,+∞)上沒有零點(diǎn).因?yàn)閒(?x)=(?x)2?4(?x)sin(?x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子設(shè)備租賃委托合同三篇
- 高中化學(xué)鹵素知識(shí)點(diǎn)
- 2025年中考數(shù)學(xué)高分拓展必刷題之圖形旋轉(zhuǎn)問題
- 內(nèi)分泌科主治醫(yī)師考試模擬題(151~200)
- 六年級(jí)下冊(cè)數(shù)學(xué)教案
- 家電行業(yè)客戶滿意度提升方案
- 書店店長文化活動(dòng)策劃方案
- 食品檢驗(yàn)員培訓(xùn)
- 2024-2025學(xué)年上海市閔行區(qū)八年級(jí)(上)期中數(shù)學(xué)試卷(含解析)
- 高校體育活動(dòng)體溫監(jiān)測(cè)制度
- 國家開放大學(xué)《zy銀行理論與實(shí)務(wù)》形成性考核1-4參考答案
- 【已填內(nèi)容】個(gè)人業(yè)績相關(guān)信息采集表 含政治表現(xiàn)、最滿意、主要特點(diǎn)、不足
- 口袋妖怪黃版隱藏道具
- excel自動(dòng)生產(chǎn)排程(至柔Ⅱ) 最新版
- 湖北某創(chuàng)省優(yōu)質(zhì)安全文明工地實(shí)施方案(楚天杯)_secret
- 案例分折----奇瑞信息化
- 九陽真經(jīng)原文
- 企業(yè)有價(jià)證券管理制度
- 機(jī)關(guān)工作人員考勤表Excel模板
- 日照市重點(diǎn)支柱產(chǎn)業(yè)情況
- 兒童過敏性休克ppt課件
評(píng)論
0/150
提交評(píng)論