2022屆上海外國語大學(xué)附屬中學(xué)高三最后一模數(shù)學(xué)試題含解析_第1頁
2022屆上海外國語大學(xué)附屬中學(xué)高三最后一模數(shù)學(xué)試題含解析_第2頁
2022屆上海外國語大學(xué)附屬中學(xué)高三最后一模數(shù)學(xué)試題含解析_第3頁
2022屆上海外國語大學(xué)附屬中學(xué)高三最后一模數(shù)學(xué)試題含解析_第4頁
2022屆上海外國語大學(xué)附屬中學(xué)高三最后一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列,,,…,是首項為8,公比為得等比數(shù)列,則等于()A.64 B.32 C.2 D.42.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關(guān)于軸對稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.3.一個由兩個圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.4.點是單位圓上不同的三點,線段與線段交于圓內(nèi)一點M,若,則的最小值為()A. B. C. D.5.已知定義在上的函數(shù)在區(qū)間上單調(diào)遞增,且的圖象關(guān)于對稱,若實數(shù)滿足,則的取值范圍是()A. B. C. D.6.若實數(shù)、滿足,則的最小值是()A. B. C. D.7.函數(shù)在的圖象大致為()A. B.C. D.8.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.9.我國著名數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個大于的偶數(shù)可以表示為兩個素數(shù)的和”(注:如果一個大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個整數(shù)為素數(shù)),在不超過的素數(shù)中,隨機(jī)選取個不同的素數(shù)、,則的概率是()A. B. C. D.10.復(fù)數(shù),若復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點關(guān)于虛軸對稱,則等于()A. B. C. D.11.下圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.12.設(shè),,分別是中,,所對邊的邊長,則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐中,,,則該三棱錐的外接球的表面積是________.14.已知為橢圓上的一個動點,,,設(shè)直線和分別與直線交于,兩點,若與的面積相等,則線段的長為______.15.如圖所示的流程圖中,輸出的值為______.16.執(zhí)行右邊的程序框圖,輸出的的值為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.18.(12分)已知函數(shù).(Ⅰ)求的值;(Ⅱ)若,且,求的值.19.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個位數(shù)字為葉):若分?jǐn)?shù)不低于95分,則稱該員工的成績?yōu)椤皟?yōu)秀”.(1)從這20人中任取3人,求恰有1人成績“優(yōu)秀”的概率;(2)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全下方的頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖解決下面的問題.組別分組頻數(shù)頻率1234①估計所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);②若從所有員工中任選3人,記表示抽到的員工成績?yōu)椤皟?yōu)秀”的人數(shù),求的分布列和數(shù)學(xué)期望.20.(12分)如圖,在中,,,點在線段上.(1)若,求的長;(2)若,,求的面積.21.(12分)已知等差數(shù)列的前n項和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)已知,求數(shù)列的前n項和.22.(10分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點M對應(yīng)的參數(shù),射線與曲線交于點.(1)求曲線,的直角坐標(biāo)方程;(2)若點A,B為曲線上的兩個點且,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據(jù)題意依次計算得到答案.【詳解】根據(jù)題意知:,,故,,.故選:.【點睛】本題考查了數(shù)列值的計算,意在考查學(xué)生的計算能力.2.D【解析】

先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關(guān)于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調(diào)性,圖象的平移,在進(jìn)行圖象的平移時,注意自變量的系數(shù),屬于中檔題.3.B【解析】

根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎(chǔ)題.4.D【解析】

由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當(dāng)且僅當(dāng)時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.5.C【解析】

根據(jù)題意,由函數(shù)的圖象變換分析可得函數(shù)為偶函數(shù),又由函數(shù)在區(qū)間上單調(diào)遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數(shù)的圖象向左平移個單位長度可得函數(shù)的圖象,由于函數(shù)的圖象關(guān)于直線對稱,則函數(shù)的圖象關(guān)于軸對稱,即函數(shù)為偶函數(shù),由,得,函數(shù)在區(qū)間上單調(diào)遞增,則,得,解得.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性與奇偶性解不等式,注意分析函數(shù)的奇偶性,屬于中等題.6.D【解析】

根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點,由得,平移直線,當(dāng)該直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.7.B【解析】

先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點睛】本題考查函數(shù)圖象的判斷,屬于??碱}.8.A【解析】

根據(jù)直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎(chǔ)題.9.B【解析】

先列舉出不超過的素數(shù),并列舉出所有的基本事件以及事件“在不超過的素數(shù)中,隨機(jī)選取個不同的素數(shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素數(shù)有:、、、、、,在不超過的素數(shù)中,隨機(jī)選取個不同的素數(shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素數(shù)中,隨機(jī)選取個不同的素數(shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎(chǔ)題.10.A【解析】

先通過復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點關(guān)于虛軸對稱,得到,再利用復(fù)數(shù)的除法求解.【詳解】因為復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點關(guān)于虛軸對稱,且復(fù)數(shù),所以所以故選:A【點睛】本題主要考查復(fù)數(shù)的基本運算和幾何意義,屬于基礎(chǔ)題.11.D【解析】

根據(jù)以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進(jìn)而求得所求表達(dá)式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查二倍角公式,屬于基礎(chǔ)題.12.C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關(guān)系二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

將三棱錐補(bǔ)成長方體,設(shè),,,設(shè)三棱錐的外接球半徑為,求得的值,然后利用球體表面積公式可求得結(jié)果.【詳解】將三棱錐補(bǔ)成長方體,設(shè),,,設(shè)三棱錐的外接球半徑為,則,由勾股定理可得,上述三個等式全部相加得,,因此,三棱錐的外接球面積為.故答案為:.【點睛】本題考查三棱錐外接球表面積的計算,根據(jù)三棱錐對棱長相等將三棱錐補(bǔ)成長方體是解答的關(guān)鍵,考查推理能力,屬于中等題.14.【解析】

先設(shè)點坐標(biāo),由三角形面積相等得出兩個三角形的邊之間的比例關(guān)系,這個比例關(guān)系又可用線段上點的坐標(biāo)表示出來,從而可求得點的橫坐標(biāo),代入橢圓方程得縱坐標(biāo),然后可得.【詳解】如圖,設(shè),,,由,得,由得,∴,解得,又在橢圓上,∴,,∴.故答案為:.【點睛】本題考查直線與橢圓相交問題,解題時由三角形面積相等得出線段長的比例關(guān)系,解題是由把線段長的比例關(guān)系用點的橫坐標(biāo)表示.15.4【解析】

根據(jù)流程圖依次運行直到,結(jié)束循環(huán),輸出n,得出結(jié)果.【詳解】由題:,,,結(jié)束循環(huán),輸出.故答案為:4【點睛】此題考查根據(jù)程序框圖運行結(jié)果求輸出值,關(guān)鍵在于準(zhǔn)確識別循環(huán)結(jié)構(gòu)和判斷框語句.16.【解析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結(jié)束所以答案應(yīng)填:考點:1、程序框圖;2、定積分.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析(3)證明見解析【解析】

(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導(dǎo)出,,由此能證明的“極差數(shù)列”仍是.(3)證當(dāng)數(shù)列是等差數(shù)列時,設(shè)其公差為,,是一個單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【詳解】(1)解:∵無窮數(shù)列的前項中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當(dāng)數(shù)列是等差數(shù)列時,設(shè)其公差為,,根據(jù),的定義,得:,,且兩個不等式中至少有一個取等號,當(dāng)時,必有,∴,∴是一個單調(diào)遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當(dāng)時,則必有,∴,∴是一個單調(diào)遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當(dāng)時,,∵,中必有一個為0,根據(jù)上式,一個為0,為一個必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【點睛】本小題主要考查新定義數(shù)列的理解和運用,考查等差數(shù)列的證明,考查數(shù)列的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.18.(Ⅰ);(Ⅱ).【解析】

(Ⅰ)直接代入再由誘導(dǎo)公式計算可得;(Ⅱ)先得到,再根據(jù)利用兩角差的余弦公式計算可得.【詳解】解:(Ⅰ);(Ⅱ)因為所以,由得,又因為,故,所以,所以.【點睛】本題考查了三角函數(shù)中的恒等變換應(yīng)用,屬于中檔題.19.(1);(2)①82,②分布列見解析,【解析】

(1)從20人中任取3人共有種結(jié)果,恰有1人成績“優(yōu)秀”共有種結(jié)果,利用古典概型的概率計算公式計算即可;(2)①平均數(shù)的估計值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項分布,不是超幾何分布,利用二項分布的分布列及期望公式求解即可.【詳解】(1)設(shè)從20人中任取3人恰有1人成績“優(yōu)秀”為事件,則,所以,恰有1人“優(yōu)秀”的概率為.(2)組別分組頻數(shù)頻率120.01260.03380.04440.02①,估計所有員工的平均分為82②的可能取值為0、1、2、3,隨機(jī)選取1人是“優(yōu)秀”的概率為,∴;;;;∴的分布列為0123∵,∴數(shù)學(xué)期望.【點睛】本題考查古典概型的概率計算以及二項分布期望的問題,涉及到頻率分布直方圖、平均數(shù)的估計值等知識,是一道容易題.20.(1)(2)【解析】

(1)先根據(jù)平方關(guān)系求出,再根據(jù)正弦定理即可求出;(2)分別在和中,根據(jù)正弦定理列出兩個等式,兩式相除,利用題目條件即可求出,再根據(jù)余弦定理求出,即可根據(jù)求出的面積.【詳解】(1)由,得,所以.由正弦定理得,,即,得.(2)由正弦定理,在中,,①在中,,②又,,,由得,由余弦定理得,即,解得,所以的面積.【點睛】本題主要考查正余弦定理在解三角形中的應(yīng)用,以及三角形面積公式的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運算能力,屬于基礎(chǔ)題.21.(1),();(2).【解析】

(1)根據(jù)是等差數(shù)列,,、、成等比數(shù)列,列兩個方程即可求出,從而求得,代入化簡即可求得;(2)化簡后求和為裂項相消求和,分組求和即可,注意討論公比是否為1.【詳解】(1)由題意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①當(dāng)時,.②當(dāng)時,.【點睛】此題等差數(shù)列的通項公式的求解,裂項相消求和等知識點,考查了化歸和轉(zhuǎn)化思想,屬于一般性題目.22.(1)..(2)【解析】

(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論