版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年吉林省長春市汽開區(qū)達標名校中考數(shù)學最后一模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖1是某生活小區(qū)的音樂噴泉,水流在各個方向上沿形狀相同的拋物線路徑落下,其中一個噴水管噴水的最大高度為3m,此時距噴水管的水平距離為1m,在如圖2所示的坐標系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數(shù)關系式是()A. B.C. D.2.下列說法:四邊相等的四邊形一定是菱形順次連接矩形各邊中點形成的四邊形一定是正方形對角線相等的四邊形一定是矩形經過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分其中正確的有個.A.4 B.3 C.2 D.13.如圖,平行四邊形ABCD的周長為12,∠A=60°,設邊AB的長為x,四邊形ABCD的面積為y,則下列圖象中,能表示y與x函數(shù)關系的圖象大致是()A. B. C. D.4.已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且?2≤x≤1時,y的最大值為9,則a的值為A.1或?2B.?2或2C.2D.15.下列四個式子中,正確的是()A.=±9 B.﹣=6 C.()2=5 D.=46.如圖,每個小正方形的邊長均為1,則下列圖形中的三角形(陰影部分)與相似的是()A. B.C. D.7.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐8.估計﹣1的值為()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間9.某校決定從三名男生和兩名女生中選出兩名同學擔任校藝術節(jié)文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.10.一元二次方程x2﹣3x+1=0的根的情況()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.沒有實數(shù)根 D.以上答案都不對二、填空題(本大題共6個小題,每小題3分,共18分)11.函數(shù)的定義域是________.12.一次函數(shù)y=kx+b(k≠0)的圖象如圖所示,那么不等式kx+b<0的解集是_____.13.如圖1,在平面直角坐標系中,將?ABCD放置在第一象限,且AB∥x軸,直線y=﹣x從原點出發(fā)沿x軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度l與直線在x軸上平移的距離m的函數(shù)圖象如圖2,那么ABCD面積為_____.14.若關于x的方程x2﹣8x+m=0有兩個相等的實數(shù)根,則m=_____.15.如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點P是AE上一個動點,則PF+PB的最小值為_____.16.李明早上騎自行車上學,中途因道路施工推車步行了一段路,到學校共用時15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學校的路程是2900米,設他推車步行的時間為x分鐘,那么可列出的方程是_____________.三、解答題(共8題,共72分)17.(8分)邊長為6的等邊△ABC中,點D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N.當CC′多大時,四邊形MCND′為菱形?并說明理由.如圖2,將△DEC繞點C旋轉∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點為P.①在旋轉過程中,AD′和BE′有怎樣的數(shù)量關系?并說明理由;②連接AP,當AP最大時,求AD′的值.(結果保留根號)18.(8分)先化簡,再求值:(m+2﹣)?,其中m=﹣.19.(8分)已知P是的直徑BA延長線上的一個動點,∠P的另一邊交于點C、D,兩點位于AB的上方,=6,OP=m,,如圖所示.另一個半徑為6的經過點C、D,圓心距.(1)當m=6時,求線段CD的長;(2)設圓心O1在直線上方,試用n的代數(shù)式表示m;(3)△POO1在點P的運動過程中,是否能成為以OO1為腰的等腰三角形,如果能,試求出此時n的值;如果不能,請說明理由.20.(8分)已知:如圖,點E是正方形ABCD的邊CD上一點,點F是CB的延長線上一點,且DE=BF.求證:EA⊥AF.21.(8分)如圖,在正方形ABCD中,E為對角線AC上一點,CE=CD,連接EB、ED,延長BE交AD于點F.求證:DF2=EF?BF.22.(10分)如圖,矩形中,點是線段上一動點,為的中點,的延長線交BC于.(1)求證:;(2)若,,從點出發(fā),以l的速度向運動(不與重合).設點運動時間為,請用表示的長;并求為何值時,四邊形是菱形.23.(12分)已知:a+b=4(1)求代數(shù)式(a+1)(b+1)﹣ab值;(2)若代數(shù)式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.24.某公司今年1月份的生產成本是400萬元,由于改進技術,生產成本逐月下降,3月份的生產成本是361萬元.假設該公司2、3、4月每個月生產成本的下降率都相同.求每個月生產成本的下降率;請你預測4月份該公司的生產成本.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據圖象可設二次函數(shù)的頂點式,再將點(0,0)代入即可.【詳解】解:根據圖象,設函數(shù)解析式為由圖象可知,頂點為(1,3)∴,將點(0,0)代入得解得∴故答案為:D.【點睛】本題考查了是根據實際拋物線形,求函數(shù)解析式,解題的關鍵是正確設出函數(shù)解析式.2、C【解析】
∵四邊相等的四邊形一定是菱形,∴①正確;∵順次連接矩形各邊中點形成的四邊形一定是菱形,∴②錯誤;∵對角線相等的平行四邊形才是矩形,∴③錯誤;∵經過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分,∴④正確;其中正確的有2個,故選C.考點:中點四邊形;平行四邊形的性質;菱形的判定;矩形的判定與性質;正方形的判定.3、C【解析】
過點B作BE⊥AD于E,構建直角△ABE,通過解該直角三角形求得BE的長度,然后利用平行四邊形的面積公式列出函數(shù)關系式,結合函數(shù)關系式找到對應的圖像.【詳解】如圖,過點B作BE⊥AD于E.∵∠A=60°,設AB邊的長為x,∴BE=AB?sin60°=x.∵平行四邊形ABCD的周長為12,∴AB=(12-2x)=6-x,∴y=AD?BE=(6-x)×x=﹣(0≤x≤6).則該函數(shù)圖像是一開口向下的拋物線的一部分,觀察選項,C符合題意.故選C.【點睛】本題考查了二次函數(shù)的圖像,根據題意求出正確的函數(shù)關系式是解題的關鍵.4、D【解析】
先求出二次函數(shù)的對稱軸,再根據二次函數(shù)的增減性得出拋物線開口向上a>0,然后由-2≤x≤1時,y的最大值為9,可得x=1時,y=9,即可求出a.【詳解】∵二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),∴對稱軸是直線x=-2a2a∵當x≥2時,y隨x的增大而增大,∴a>0,∵-2≤x≤1時,y的最大值為9,∴x=1時,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合題意舍去).故選D.【點睛】本題考查了二次函數(shù)的性質,二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標是(-b2a,4ac-b24a),對稱軸直線x=-b2a,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質:①當a>0時,拋物線y=ax2+bx+c(a≠0)的開口向上,x<-b2a時,y隨x的增大而減?。粁>-b2a時,y隨x的增大而增大;x=-b2a時,y取得最小值4ac-b24a5、D【解析】
A、表示81的算術平方根;B、先算-6的平方,然后再求?的值;C、利用完全平方公式計算即可;D、=.【詳解】A、=9,故A錯誤;B、-=?=-6,故B錯誤;C、()2=2+2+3=5+2,故C錯誤;D、==4,故D正確.故選D.【點睛】本題主要考查的是實數(shù)的運算,掌握算術平方根、平方根和二次根式的性質以及完全平方公式是解題的關鍵.6、B【解析】
根據相似三角形的判定方法一一判斷即可.【詳解】解:因為中有一個角是135°,選項中,有135°角的三角形只有B,且滿足兩邊成比例夾角相等,故選:B.【點睛】本題考查相似三角形的性質,解題的關鍵是學會利用數(shù)形結合的思想解決問題,屬于中考??碱}型.7、D【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂?shù)膱A心,符合題意的只有圓錐.故選D.【點睛】本題考查由三視圖確定幾何體的形狀,主要考查學生空間想象能力以及對立體圖形的認識.8、C【解析】分析:根據被開方數(shù)越大算術平方根越大,可得答案.詳解:∵<<,∴1<<5,∴3<﹣1<1.故選C.點睛:本題考查了估算無理數(shù)的大小,利用被開方數(shù)越大算術平方根越大得出1<<5是解題的關鍵,又利用了不等式的性質.9、B【解析】試題解析:列表如下:∴共有20種等可能的結果,P(一男一女)=.
故選B.10、B【解析】
首先確定a=1,b=-3,c=1,然后求出△=b2-4ac的值,進而作出判斷.【詳解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0兩個不相等的實數(shù)根;故選B.【點睛】此題考查了根的判別式,一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù);(3)△<0?方程沒有實數(shù)根.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≥-1【解析】分析:根據二次根式的性質,被開方數(shù)大于或等于0,可以求出x的范圍.詳解:根據題意得:x+1≥0,解得:x≥﹣1.故答案為x≥﹣1.點睛:考查了函數(shù)的定義域,函數(shù)的定義域一般從三個方面考慮:(1)當函數(shù)表達式是整式時,定義域可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(1)當函數(shù)表達式是二次根式時,被開方數(shù)非負.12、x>﹣1.【解析】
一次函數(shù)y=kx+b的圖象在x軸下方時,y<0,再根據圖象寫出解集即可.【詳解】當不等式kx+b<0時,一次函數(shù)y=kx+b的圖象在x軸下方,因此x>﹣1.故答案為:x>﹣1.【點睛】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=kx+b(k≠0)的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b(k≠0)在x軸上(或下)方部分所有的點的橫坐標所構成的集合.13、1【解析】
根據圖象可以得到當移動的距離是4時,直線經過點A,當移動距離是7時,直線經過D,在移動距離是1時經過B,則AB=1-4=4,當直線經過D點,設其交AB與E,則DE=2,作DF⊥AB于點F.利用三角函數(shù)即可求得DF即平行四邊形的高,然后利用平行四邊形的面積公式即可求解【詳解】解:由圖象可知,當移動距離為4時,直線經過點A,當移動距離為7時,直線經過點D,移動距離為1時,直線經過點B,則AB=1﹣4=4,當直線經過點D,設其交AB于點E,則DE=2,作DF⊥AB于點F,∵y=﹣x于x軸負方向成45°角,且AB∥x軸,∴∠DEF=45°,∴DF=EF,∴在直角三角形DFE中,DF2+EF2=DE2,∴2DF2=1∴DF=2,那么ABCD面積為:AB?DF=4×2=1,故答案為1.【點睛】此題主要考查平行四邊形的性質和一次函數(shù)圖象與幾何變換,解題關鍵在于利用好輔助線14、1【解析】
根據判別式的意義得到△=(﹣8)2﹣4m=0,然后解關于m的方程即可.【詳解】△=(﹣8)2﹣4m=0,解得m=1,故答案為:1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.15、【解析】
如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四邊形ADEF是菱形,推出F,D關于直線AE對稱,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是線段BD的長.【詳解】如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四邊形ADEF是菱形,∴F,D關于直線AE對稱,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是線段BD的長,∵∠CAB=180°-105°-45°=30°,設AF=EF=AD=x,則DH=EG=x,F(xiàn)G=x,∵∠EGB=45°,EG⊥BG,∴EG=BG=x,∴x+x+x=3+,∴x=2,∴DH=1,BH=3,∴BD==,∴PF+PB的最小值為,故答案為.【點睛】本題考查軸對稱-最短問題,菱形的性質等知識,解題的關鍵是學會用轉化的思想思考問題,學會利用軸對稱解決最短問題.16、【解析】分析:根據題意把李明步行和騎車各自所走路程表達出來,再結合步行和騎車所走總里程為2900米,列出方程即可.詳解:設他推車步行的時間為x分鐘,根據題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點睛:弄清本題中的等量關系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關鍵.三、解答題(共8題,共72分)17、(1)當CC'=時,四邊形MCND'是菱形,理由見解析;(2)①AD'=BE',理由見解析;②.【解析】
(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉的性質,即可判斷出△ACD≌△BCE'即可得出結論;②先判斷出點A,C,P三點共線,先求出CP,AP,最后用勾股定理即可得出結論.【詳解】(1)當CC'=時,四邊形MCND'是菱形.理由:由平移的性質得,CD∥C'D',DE∥D'E',∵△ABC是等邊三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分線,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四邊形MCND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等邊三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四邊形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:當α≠180°時,由旋轉的性質得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',當α=180°時,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',綜上可知:AD'=BE'.②如圖連接CP,在△ACP中,由三角形三邊關系得,AP<AC+CP,∴當點A,C,P三點共線時,AP最大,如圖1,在△D'CE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=.【點睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質,菱形的性質,平移和旋轉的性質,等邊三角形的判定和性質,勾股定理,解(1)的關鍵是四邊形MCND'是平行四邊形,解(2)的關鍵是判斷出點A,C,P三點共線時,AP最大.18、-2(m+3),-1.【解析】
此題的運算順序:先括號里,經過通分,再約分化為最簡,最后代值計算.【詳解】解:(m+2-)?,=,=-,=-2(m+3).把m=-代入,得,原式=-2×(-+3)=-1.19、(1)CD=;(2)m=;(3)n的值為或【解析】分析:(1)過點作⊥,垂足為點,連接.解Rt△,得到的長.由勾股定理得的長,再由垂徑定理即可得到結論;(2)解Rt△,得到和Rt△中,由勾股定理即可得到結論;(3)△成為等腰三角形可分以下幾種情況討論:①當圓心、在弦異側時,分和.②當圓心、在弦同側時,同理可得結論.詳解:(1)過點作⊥,垂足為點,連接.在Rt△,∴.∵=6,∴.由勾股定理得:.∵⊥,∴.(2)在Rt△,∴.在Rt△中,.在Rt△中,.可得:,解得.(3)△成為等腰三角形可分以下幾種情況:①當圓心、在弦異側時i),即,由,解得.即圓心距等于、的半徑的和,就有、外切不合題意舍去.ii),由,解得:,即,解得.②當圓心、在弦同側時,同理可得:.∵是鈍角,∴只能是,即,解得.綜上所述:n的值為或.點睛:本題是圓的綜合題.考查了圓的有關性質和兩圓的位置關系以及解直徑三角形.解答(3)的關鍵是要分類討論.20、見解析【解析】
根據條件可以得出AD=AB,∠ABF=∠ADE=90°,從而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出結論.【詳解】證明:∵四邊形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°.∵在△BAF和△DAE中,,∴△BAF≌△DAE(SAS),∴∠FAB=∠EAD,∵∠EAD+∠BAE=90°,∴∠FAB+∠BAE=90°,∴∠FAE=90°,∴EA⊥AF.21、見解析【解析】
證明△FDE∽△FBD即可解決問題.【詳解】解:∵四邊形ABCD是正方形,∴BC=CD,且∠BCE=∠DCE,又∵CE是公共邊,∴△BEC≌△DEC,∴∠BEC=∠DEC.∵CE=CD,∴∠DEC=∠EDC.∵∠BEC=∠DEC,∠BEC=∠AEF,∴∠EDC=∠AEF.∵∠AEF+∠FED=∠EDC+∠ECD,∴∠FED=∠ECD.∵四邊形ABCD是正方形,∴∠ECD=∠BCD=45°,∠ADB=∠ADC=45°,∴∠ECD=∠ADB.∴∠FED=∠ADB.又∵∠BFD是公共角,∴△FDE∽△FBD,∴=,即DF2=EF?BF.【點睛】本題考查了相似三角形的判定與性質,和正方形的性質,正確理解正方形的性質是關鍵.22、(1)證明見解析;(2)PD=8-t,運動時間為秒時,四邊形PBQD是菱形.【解析】
(1)先根據四邊形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根據O為BD的中點得出△POD≌△QOB,即可證得OP=OQ;(2)根據已知條件得出∠A的度數(shù),再根據AD=8cm,AB=6cm,得出BD和OD的長,再根據四邊形PBQD是菱形時,利用勾股定理即可求出t的值,判斷出四邊形PBQ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 桔子汁飲料課程設計
- 游戲策劃實踐作業(yè)指導書
- 電信增值服務行業(yè)語音識別與智能客服系統(tǒng)方案
- 節(jié)假日促銷活動方案
- 水池防滲施工方案
- 戰(zhàn)略合作協(xié)議騙局
- 綠色可持續(xù)發(fā)展推廣計劃
- 宣傳發(fā)行委托協(xié)議
- 童裝供貨合作方案
- 初中生自制數(shù)學試卷
- 作文素材:《南方周末》1997-2023年新年獻詞全匯編
- 員工待崗期滿考核方案
- 進駐商場計劃書
- 建筑施工材料供應鏈管理與控制
- 代理人培養(yǎng)計劃書
- 傳播學理論復習資料
- 鄉(xiāng)鎮(zhèn)污水處理調研報告
- 沈從文先生在西南聯(lián)大全文
- 紀檢涉案財物管理規(guī)定
- 低溫雨雪冰凍災害應急救援準備
- 《企業(yè)信息管理》2023期末試題及答案
評論
0/150
提交評論