2023-2024學年甘肅省平?jīng)鍪星f浪縣市級名校初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第1頁
2023-2024學年甘肅省平?jīng)鍪星f浪縣市級名校初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第2頁
2023-2024學年甘肅省平?jīng)鍪星f浪縣市級名校初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第3頁
2023-2024學年甘肅省平?jīng)鍪星f浪縣市級名校初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第4頁
2023-2024學年甘肅省平?jīng)鍪星f浪縣市級名校初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年甘肅省平?jīng)鍪星f浪縣市級名校初中數(shù)學畢業(yè)考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于D,DE是AB的垂直平分線,垂足為E,若BC=3,則DE的長為()A.1 B.2 C.3 D.42.將拋物線y=x2向左平移2個單位,再向下平移5個單位,平移后所得新拋物線的表達式為()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+53.一組數(shù)據(jù):6,3,4,5,7的平均數(shù)和中位數(shù)分別是()A.5,5 B.5,6 C.6,5 D.6,64.如圖,二次函數(shù)的圖象開口向下,且經(jīng)過第三象限的點若點P的橫坐標為,則一次函數(shù)的圖象大致是A. B. C. D.5.的倒數(shù)的絕對值是()A. B. C. D.6.如圖是一個小正方體的展開圖,把展開圖折疊成小正方體后,有“我”字的一面相對面上的字是()A.國 B.厲 C.害 D.了7.如圖,在?ABCD中,AB=2,BC=1.以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是()A. B.1 C. D.8.已知二次函數(shù)(m為常數(shù))的圖象與x軸的一個交點為(1,0),則關于x的一元二次方程的兩實數(shù)根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=39.如圖,將△OAB繞O點逆時針旋轉60°得到△OCD,若OA=4,∠AOB=35°,則下列結論錯誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=410.已知,用尺規(guī)作圖的方法在上確定一點,使,則符合要求的作圖痕跡是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知拋物線與直線在之間有且只有一個公共點,則的取值范圍是__.12.廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達式為y=-140x13.如圖,△ABC中,點D、E分別在邊AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,則EC的長是_____.14.若一次函數(shù)y=-2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,則b的值可以是_________.(寫出一個即可)15.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=_____°.16.使得關于x的分式方程的解為負整數(shù),且使得關于x的不等式組有且僅有5個整數(shù)解的所有k的和為_____.三、解答題(共8題,共72分)17.(8分)計算:×(2﹣)﹣÷+.18.(8分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經(jīng)過點A,EF與AC交于M點.(1)求證:△ABE∽△ECM;(2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形?若能,求出BE的長;若不能,請說明理由;(3)當線段AM最短時,求重疊部分的面積.19.(8分)如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.(1)求∠A的度數(shù).(2)求圖中陰影部分的面積.20.(8分)如圖,點B、E、C、F在同一條直線上,AB=DE,AC=DF,BE=CF,求證:AB∥DE.21.(8分)旋轉變換是解決數(shù)學問題中一種重要的思想方法,通過旋轉變換可以將分散的條件集中到一起,從而方便解決問題.已知,△ABC中,AB=AC,∠BAC=α,點D、E在邊BC上,且∠DAE=α.(1)如圖1,當α=60°時,將△AEC繞點A順時針旋轉60°到△AFB的位置,連接DF,①求∠DAF的度數(shù);②求證:△ADE≌△ADF;(2)如圖2,當α=90°時,猜想BD、DE、CE的數(shù)量關系,并說明理由;(3)如圖3,當α=120°,BD=4,CE=5時,請直接寫出DE的長為.22.(10分)閱讀下列材料:材料一:早在2011年9月25日,北京故宮博物院就開始嘗試網(wǎng)絡預售門票,2011年全年網(wǎng)絡售票僅占1.68%.2012年至2014年,全年網(wǎng)絡售票占比都在2%左右.2015年全年網(wǎng)絡售票占17.33%,2016年全年網(wǎng)絡售票占比增長至41.14%.2017年8月實現(xiàn)網(wǎng)絡售票占比77%.2017年10月2日,首次實現(xiàn)全部網(wǎng)上售票.與此同時,網(wǎng)絡購票也采用了“人性化”的服務方式,為沒有線上支付能力的觀眾提供代客下單服務.實現(xiàn)全網(wǎng)絡售票措施后,在北京故宮博物院的精細化管理下,觀眾可以更自主地安排自己的行程計劃,獲得更美好的文化空間和參觀體驗.材料二:以下是某同學根據(jù)網(wǎng)上搜集的數(shù)據(jù)制作的年度中國國家博物館參觀人數(shù)及年增長率統(tǒng)計表.年度20132014201520162017參觀人數(shù)(人次)74500007630000729000075500008060000年增長率(%)38.72.4-4.53.66.8他還注意到了如下的一則新聞:2018年3月8日,中國國家博物館官方微博發(fā)文,宣布取消紙質(zhì)門票,觀眾持身份證預約即可參觀.國博正在建設智慧國家博物館,同時館方工作人員擔心的是:“雖然有故宮免(紙質(zhì))票的經(jīng)驗在前,但對于國博來說這項工作仍有新的挑戰(zhàn).參觀故宮需要觀眾網(wǎng)上付費購買門票,他遵守預約的程度是不一樣的.但(國博)免費就有可能約了不來,擠占資源,所以難度其實不一樣.”盡管如此,國博仍將積極采取技術和服務升級,希望帶給觀眾一個更完美的體驗方式.根據(jù)以上信息解決下列問題:(1)補全以下兩個統(tǒng)計圖;(2)請你預估2018年中國國家博物館的參觀人數(shù),并說明你的預估理由.23.(12分)解方程(2x+1)2=3(2x+1)24.某公司銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如表所示AB進價(萬元/套)1.51.2售價(萬元/套)1.81.4該公司計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤12萬元.(1)該公司計劃購進A,B兩種品牌的教學設備各多少套?(2)通過市場調(diào)研,該公司決定在原計劃的基礎上,減少A種設備的購進數(shù)量,增加B種設備的購進數(shù)量,已知B種設備增加的數(shù)量是A種設備減少的數(shù)量的1.5倍.若用于購進這兩種教學設備的總資金不超過68萬元,問A種設備購進數(shù)量至多減少多少套?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:由角平分線和線段垂直平分線的性質(zhì)可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考點:線段垂直平分線的性質(zhì)2、A【解析】

直接根據(jù)“上加下減,左加右減”的原則進行解答即可.【詳解】拋物線y=x2的頂點坐標為(0,0),先向左平移2個單位再向下平移1個單位后的拋物線的頂點坐標為(﹣2,﹣1),所以,平移后的拋物線的解析式為y=(x+2)2﹣1.故選:A.【點睛】本題考查了二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答本題的關鍵.3、A【解析】試題分析:根據(jù)平均數(shù)的定義列式計算,再根據(jù)找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)解答.平均數(shù)為:×(6+3+4+1+7)=1,按照從小到大的順序排列為:3,4,1,6,7,所以,中位數(shù)為:1.故選A.考點:中位數(shù);算術平均數(shù).4、D【解析】【分析】根據(jù)二次函數(shù)的圖象可以判斷a、b、的正負情況,從而可以得到一次函數(shù)經(jīng)過哪幾個象限,觀察各選項即可得答案.【詳解】由二次函數(shù)的圖象可知,,,當時,,的圖象經(jīng)過二、三、四象限,觀察可得D選項的圖象符合,故選D.【點睛】本題考查二次函數(shù)的圖象與性質(zhì)、一次函數(shù)的圖象與性質(zhì),認真識圖,會用函數(shù)的思想、數(shù)形結合思想解答問題是關鍵.5、D【解析】

直接利用倒數(shù)的定義結合絕對值的性質(zhì)分析得出答案.【詳解】解:?的倒數(shù)為?,則?的絕對值是:.故答案選:D.【點睛】本題考查了倒數(shù)的定義與絕對值的性質(zhì),解題的關鍵是熟練的掌握倒數(shù)的定義與絕對值的性質(zhì).6、A【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點作答.【詳解】∴有“我”字一面的相對面上的字是國.故答案選A.【點睛】本題考查的知識點是專題:正方體相對兩個面上的文字,解題的關鍵是熟練的掌握正方體相對兩個面上的文字.7、B【解析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.8、B【解析】試題分析:∵二次函數(shù)(m為常數(shù))的圖象與x軸的一個交點為(1,0),∴.∴.故選B.9、D【解析】

由△OAB繞O點逆時針旋轉60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據(jù)此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項;由∠AOB=35°,∠AOC=60°可判斷B選項,據(jù)此可得答案.【詳解】解:∵△OAB繞O點逆時針旋轉60°得到△OCD,

∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項正確;

則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項正確;

∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項正確.

故選D.【點睛】本題考查旋轉的性質(zhì),解題的關鍵是掌握旋轉的性質(zhì):①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等及等邊三角形的判定和性質(zhì).10、D【解析】試題分析:D選項中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點:作圖—復雜作圖.二、填空題(本大題共6個小題,每小題3分,共18分)11、或.【解析】

聯(lián)立方程可得,設,從而得出的圖象在上與x軸只有一個交點,當△時,求出此時m的值;當△時,要使在之間有且只有一個公共點,則當x=-2時和x=2時y的值異號,從而求出m的取值范圍;【詳解】聯(lián)立可得:,令,拋物線與直線在之間有且只有一個公共點,即的圖象在上與x軸只有一個交點,當△時,即△解得:,當時,當時,,滿足題意,當△時,令,,令,,,令代入解得:,此方程的另外一個根為:,故也滿足題意,故的取值范圍為:或故答案為:或.【點睛】此題考查的是根據(jù)二次函數(shù)與一次函數(shù)的交點問題,求函數(shù)中參數(shù)的取值范圍,掌握把函數(shù)的交點問題轉化為一元二次方程解的問題是解決此題的關鍵.12、85【解析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標差的絕對值.故有-1即x2=80,x1所以兩盞警示燈之間的水平距離為:|13、【解析】

由△ABC中,點D、E分別在邊AB、BC上,DE∥AC,根據(jù)平行線分線段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【詳解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=﹣3=.故答案為.【點睛】考查了平行線分線段成比例定理,解題時注意:平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.14、-1【解析】試題分析:根據(jù)一次函數(shù)的圖象經(jīng)過第二、三、四象限,可以得出k<1,b<1,隨便寫出一個小于1的b值即可.∵一次函數(shù)y=﹣2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,∴k<1,b<1.考點:一次函數(shù)圖象與系數(shù)的關系15、40【解析】如圖,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案為:40.16、12.1【解析】

依據(jù)分式方程=1的解為負整數(shù),即可得到k>,k≠1,再根據(jù)不等式組有1個整數(shù)解,即可得到0≤k<4,進而得出k的值,從而可得符合題意的所有k的和.【詳解】解分式方程=1,可得x=1-2k,

∵分式方程=1的解為負整數(shù),

∴1-2k<0,

∴k>,

又∵x≠-1,

∴1-2k≠-1,

∴k≠1,

解不等式組,可得,

∵不等式組有1個整數(shù)解,

∴1≤<2,

解得0≤k<4,

∴<k<4且k≠1,

∴k的值為1.1或2或2.1或3或3.1,

∴符合題意的所有k的和為12.1,

故答案為12.1.【點睛】本題考查了解一元一次不等式組、分式方程的解,解題時注意分式方程中的解要滿足分母不為0的情況.三、解答題(共8題,共72分)17、5-【解析】分析:先化簡各二次根式,再根據(jù)混合運算順序依次計算可得.詳解:原式=3×(2-)-+=6--+=5-點睛:本題考查了二次根式的混合運算,熟練掌握混合運算的法則是解題的關鍵.18、(1)證明見解析;(2)能;BE=1或;(3)【解析】

(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;當AE=EM時,則△ABE≌△ECM,∴CE=AB=5,∴BE=BC?EC=6?5=1,當AM=EM時,則∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6?=;∴BE=1或;(3)解:設BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=,∴AM=5?CM,∴當x=3時,AM最短為,又∵當BE=x=3=BC時,∴點E為BC的中點,∴AE⊥BC,∴AE=,此時,EF⊥AC,∴EM=,S△AEM=.19、(1)∠A=30°;(2)【解析】

(1)連接OC,由過點C的切線交AB的延長線于點D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度數(shù)及OC長度,即可求出圖中陰影部分的面積.【詳解】解:(1)連結OC∵CD為⊙O的切線∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S陰影=.【點睛】本題考查的知識點是扇形面積的計算及切線的性質(zhì),解題的關鍵是熟練的掌握扇形面積的計算及切線的性質(zhì).20、詳見解析.【解析】試題分析:利用SSS證明△ABC≌△DEF,根據(jù)全等三角形的性質(zhì)可得∠B=∠DEF,再由平行線的判定即可得AB∥DE.試題解析:證明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),則∠B=∠DEF,∴AB∥DE.考點:全等三角形的判定與性質(zhì).21、(1)①30°②見解析(2)BD2+CE2=DE2(3)【解析】

(1)①利用旋轉的性質(zhì)得出∠FAB=∠CAE,再用角的和即可得出結論;②利用SAS判斷出△ADE≌△ADF,即可得出結論;(2)先判斷出BF=CE,∠ABF=∠ACB,再判斷出∠DBF=90°,即可得出結論;(3)同(2)的方法判斷出∠DBF=60°,再用含30度角的直角三角形求出BM,F(xiàn)M,最后用勾股定理即可得出結論.【詳解】解:(1)①由旋轉得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋轉知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如圖2,將△AEC繞點A順時針旋轉90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根據(jù)勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如圖3,將△AEC繞點A順時針旋轉90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,過點F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴,∵BD=4,∴DM=BD﹣BM=,根據(jù)勾股定理得,,∴DE=DF=,故答案為.【點睛】此題是幾何變換綜合題,主要考查了旋轉的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,構造全等三角形和直角三角形是解本題的關鍵.22、(1)見解析;(2)答案不唯一,預估理由合理,支撐預估數(shù)據(jù)即可【解析】

分析:(1)根據(jù)2015年網(wǎng)絡售票占17.33%,2017年8月實現(xiàn)網(wǎng)絡售票占比77%,2017年10月2日,首次實現(xiàn)全部網(wǎng)絡售票,即可補全圖1,根據(jù)2016年度中國國家博物館參觀人數(shù)及年增長率,即可補全圖2;(2)根據(jù)近兩年平均每年增長385000人次,即可預估2018年中國國家博物館的參觀人數(shù).詳解:(1)補全統(tǒng)計圖如(2)近兩年平均每年增長385000人次,預估2018年中國國家博物館的參觀人數(shù)為8445000人次.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論