黑龍江省哈爾濱師范大學(xué)青岡實(shí)驗(yàn)中學(xué)2022年高三第四次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
黑龍江省哈爾濱師范大學(xué)青岡實(shí)驗(yàn)中學(xué)2022年高三第四次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
黑龍江省哈爾濱師范大學(xué)青岡實(shí)驗(yàn)中學(xué)2022年高三第四次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
黑龍江省哈爾濱師范大學(xué)青岡實(shí)驗(yàn)中學(xué)2022年高三第四次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
黑龍江省哈爾濱師范大學(xué)青岡實(shí)驗(yàn)中學(xué)2022年高三第四次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若對(duì)任意,都有成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.3.已知實(shí)數(shù),則下列說(shuō)法正確的是()A. B.C. D.4.已知直線過(guò)圓的圓心,則的最小值為()A.1 B.2 C.3 D.45.已知集合,則等于()A. B. C. D.6.若復(fù)數(shù)滿足,則()A. B. C. D.7.曲線在點(diǎn)處的切線方程為,則()A. B. C.4 D.88.胡夫金字塔是底面為正方形的錐體,四個(gè)側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長(zhǎng)除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設(shè)胡夫金字塔的高為,假如對(duì)胡夫金字塔進(jìn)行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長(zhǎng)度約為A. B.C. D.9.一物體作變速直線運(yùn)動(dòng),其曲線如圖所示,則該物體在間的運(yùn)動(dòng)路程為()m.A.1 B. C. D.210.在中,角,,的對(duì)邊分別為,,,若,,,則()A. B.3 C. D.411.的展開(kāi)式中的項(xiàng)的系數(shù)為()A.120 B.80 C.60 D.4012.中國(guó)的國(guó)旗和國(guó)徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列為等差數(shù)列,其前項(xiàng)和為,已知,,若對(duì)任意都有成立,則的值為_(kāi)_________.14.若函數(shù)的圖像向左平移個(gè)單位得到函數(shù)的圖像.則在區(qū)間上的最小值為_(kāi)_______.15.在中,已知是的中點(diǎn),且,點(diǎn)滿足,則的取值范圍是_______.16.已知,則_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)等比數(shù)列的前項(xiàng)和為,若(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)在和之間插入個(gè)實(shí)數(shù),使得這個(gè)數(shù)依次組成公差為的等差數(shù)列,設(shè)數(shù)列的前項(xiàng)和為,求證:.18.(12分)在中,角,,所對(duì)的邊分別是,,,且.(1)求的值;(2)若,求的取值范圍.19.(12分)設(shè)橢圓的右焦點(diǎn)為,過(guò)的直線與交于兩點(diǎn),點(diǎn)的坐標(biāo)為.(1)當(dāng)直線的傾斜角為時(shí),求線段AB的中點(diǎn)的橫坐標(biāo);(2)設(shè)點(diǎn)A關(guān)于軸的對(duì)稱點(diǎn)為C,求證:M,B,C三點(diǎn)共線;(3)設(shè)過(guò)點(diǎn)M的直線交橢圓于兩點(diǎn),若橢圓上存在點(diǎn)P,使得(其中O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.20.(12分)在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:(1)平面平面;(2)若為棱上一點(diǎn),且與平面所成角的正弦值為,求二面角的大小.21.(12分)在中,,.已知分別是的中點(diǎn).將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.22.(10分)如圖,為等腰直角三角形,,D為AC上一點(diǎn),將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

先將所求問(wèn)題轉(zhuǎn)化為對(duì)任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過(guò)原點(diǎn)作函數(shù)的切線,設(shè)切點(diǎn)為,則,解得,所以切線斜率為,所以,解得.故選:D.【點(diǎn)睛】本題考查導(dǎo)數(shù)在不等式恒成立中的應(yīng)用,考查了學(xué)生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.2.D【解析】

利用復(fù)數(shù)的除法運(yùn)算,化簡(jiǎn)復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法運(yùn)算,其中解答中熟記復(fù)數(shù)的除法運(yùn)算法則是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.3.C【解析】

利用不等式性質(zhì)可判斷,利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【詳解】解:對(duì)于實(shí)數(shù),,不成立對(duì)于不成立.對(duì)于.利用對(duì)數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對(duì)于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.【點(diǎn)睛】利用不等式性質(zhì)比較大小.要注意不等式性質(zhì)成立的前提條件.解決此類問(wèn)題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗(yàn)證的方法.4.D【解析】

圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開(kāi)計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.5.C【解析】

先化簡(jiǎn)集合A,再與集合B求交集.【詳解】因?yàn)椋?,所?故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算以及分式不等式的解法,屬于基礎(chǔ)題.6.B【解析】

由題意得,,求解即可.【詳解】因?yàn)?所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.7.B【解析】

求函數(shù)導(dǎo)數(shù),利用切線斜率求出,根據(jù)切線過(guò)點(diǎn)求出即可.【詳解】因?yàn)?,所以,故,解得,又切線過(guò)點(diǎn),所以,解得,所以,故選:B【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于中檔題.8.D【解析】

設(shè)胡夫金字塔的底面邊長(zhǎng)為,由題可得,所以,該金字塔的側(cè)棱長(zhǎng)為,所以需要燈帶的總長(zhǎng)度約為,故選D.9.C【解析】

由圖像用分段函數(shù)表示,該物體在間的運(yùn)動(dòng)路程可用定積分表示,計(jì)算即得解【詳解】由題中圖像可得,由變速直線運(yùn)動(dòng)的路程公式,可得.所以物體在間的運(yùn)動(dòng)路程是.故選:C【點(diǎn)睛】本題考查了定積分的實(shí)際應(yīng)用,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.10.B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。11.A【解析】

化簡(jiǎn)得到,再利用二項(xiàng)式定理展開(kāi)得到答案.【詳解】展開(kāi)式中的項(xiàng)為.故選:【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力.12.A【解析】

利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問(wèn)題.【詳解】解:.故選:A【點(diǎn)睛】本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由已知條件得出關(guān)于首項(xiàng)和公差的方程組,解出這兩個(gè)量,計(jì)算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對(duì)應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時(shí),取得最大值,對(duì)任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和最值的計(jì)算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計(jì)算能力,屬于中等題.14.【解析】

注意平移是針對(duì)自變量x,所以,再利用整體換元法求值域(最值)即可.【詳解】由已知,,,又,故,,所以的最小值為.故答案為:.【點(diǎn)睛】本題考查正弦型函數(shù)在給定區(qū)間上的最值問(wèn)題,涉及到圖象的平移變換、輔助角公式的應(yīng)用,是一道基礎(chǔ)題.15.【解析】

由中點(diǎn)公式的向量形式可得,即有,設(shè),有,再分別討論三點(diǎn)共線和不共線時(shí)的情況,找到的關(guān)系,即可根據(jù)函數(shù)知識(shí)求出范圍.【詳解】是的中點(diǎn),∴,即設(shè),于是(1)當(dāng)共線時(shí),因?yàn)?,①若點(diǎn)在之間,則,此時(shí),;②若點(diǎn)在的延長(zhǎng)線上,則,此時(shí),.(2)當(dāng)不共線時(shí),根據(jù)余弦定理可得,解得,由,解得.綜上,故答案為:.【點(diǎn)睛】本題主要考查學(xué)中點(diǎn)公式的向量形式和數(shù)量積的定義的應(yīng)用,以及余弦定理的應(yīng)用,涉及到函數(shù)思想和分類討論思想的應(yīng)用,解題關(guān)鍵是建立函數(shù)關(guān)系式,屬于中檔題.16.【解析】

化簡(jiǎn)得,利用周期即可求出答案.【詳解】解:,∴函數(shù)的最小正周期為6,∴,,故答案為:.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ);(Ⅱ)詳見(jiàn)解析.【解析】

(Ⅰ),,兩式相減化簡(jiǎn)整理利用等比數(shù)列的通項(xiàng)公式即可得出.(Ⅱ)由題設(shè)可得,可得,利用錯(cuò)位相減法即可得出.【詳解】解:(Ⅰ)因?yàn)椋?,兩式相減可得,,故,因?yàn)槭堑缺葦?shù)列,∴,又,所以,故,所以;(Ⅱ)由題設(shè)可得,所以,所以,①則,②①-②得:,所以,得證.【點(diǎn)睛】本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式求和公式、錯(cuò)位相減法,考查了推理能力與計(jì)算能力,屬于中檔題.18.(1);(2)【解析】

(1)利用正弦定理邊化角,結(jié)合兩角和差正弦公式可整理求得,進(jìn)而求得和,代入求得結(jié)果;(2)利用正弦定理可將表示為,利用兩角和差正弦公式、輔助角公式將其整理為,根據(jù)正弦型函數(shù)值域的求解方法,結(jié)合的范圍可求得結(jié)果.【詳解】(1)由正弦定理可得:即(2)由(1)知:,,即的取值范圍為【點(diǎn)睛】本題考查解三角形知識(shí)的相關(guān)應(yīng)用,涉及到正弦定理邊化角的應(yīng)用、兩角和差正弦公式和輔助角公式的應(yīng)用、與三角函數(shù)值域有關(guān)的取值范圍的求解問(wèn)題;求解取值范圍的關(guān)鍵是能夠利用正弦定理將邊長(zhǎng)的問(wèn)題轉(zhuǎn)化為三角函數(shù)的問(wèn)題,進(jìn)而利用正弦型函數(shù)值域的求解方法求得結(jié)果.19.(1)AB的中點(diǎn)的橫坐標(biāo)為;(2)證明見(jiàn)解析;(3)【解析】

設(shè).(1)因?yàn)橹本€的傾斜角為,,所以直線AB的方程為,聯(lián)立方程組,消去并整理,得,則,故線段AB的中點(diǎn)的橫坐標(biāo)為.(2)根據(jù)題意得點(diǎn),若直線AB的斜率為0,則直線AB的方程為,A、C兩點(diǎn)重合,顯然M,B,C三點(diǎn)共線;若直線AB的斜率不為0,設(shè)直線AB的方程為,聯(lián)立方程組,消去并整理得,則,設(shè)直線BM、CM的斜率分別為、,則,即=,即M,B,C三點(diǎn)共線.(3)根據(jù)題意,得直線GH的斜率存在,設(shè)該直線的方程為,設(shè),聯(lián)立方程組,消去并整理,得,由,整理得,又,所以,結(jié)合,得,當(dāng)時(shí),該直線為軸,即,此時(shí)橢圓上任意一點(diǎn)P都滿足,此時(shí)符合題意;當(dāng)時(shí),由,得,代入橢圓C的方程,得,整理,得,再結(jié)合,得到,即,綜上,得到實(shí)數(shù)的取值范圍是.20.(1)證明見(jiàn)詳解;(2)【解析】

(1)由題可知,等腰直角三角形與等邊三角形,在其公共邊AC上取中點(diǎn)O,連接、,可得,可求出.在中,由勾股定理可證得,結(jié)合,可證明平面.再根據(jù)面面垂直的判定定理,可證平面平面.(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,由點(diǎn)F在線段上,設(shè),得出的坐標(biāo),進(jìn)而求出平面的一個(gè)法向量.用向量法表示出與平面所成角的正弦值,由其等于,解得.再結(jié)合為平面的一個(gè)法向量,用向量法即可求出與的夾角,結(jié)合圖形,寫(xiě)出二面角的大小.【詳解】證明:(1)在中,為正三角形,且在中,為等腰直角三角形,且取的中點(diǎn),連接,,,平面平面平面..平面平面(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,,,設(shè).則設(shè)平面的一個(gè)法向量為.則,令,解得與平面所成角的正弦值為,整理得解得或(含去)又為平面的一個(gè)法向量,二面角的大小為.【點(diǎn)睛】本題考查了線面垂直的判定,面面垂直的判定,向量法解決線面角、二面角的問(wèn)題,屬于中檔題.21.(1)證明見(jiàn)解析(2)45°【解析】

(1)設(shè)的中點(diǎn)為,連接,設(shè)的中點(diǎn)為,連接,,從而即為二面角的平面角,,推導(dǎo)出,從而平面,則,即,進(jìn)而平面,推導(dǎo)四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點(diǎn),在平面中過(guò)B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標(biāo)系,利用向量法求出平面與平面所成二面角的大小.【詳解】(1)∵是的中點(diǎn),∴.設(shè)的中點(diǎn)為,連接.設(shè)的中點(diǎn)為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點(diǎn).易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點(diǎn).∴四邊形為平行四邊形.∴,平面,又平面.∴平面平面.(2)如圖,建立空間直角坐標(biāo)系,設(shè).則,,,,顯然平面的法向量,設(shè)平面的法向量為,,,∴,∴.,由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.∴平面與平面所成的二面角大小為45°.【點(diǎn)睛】本題主要考查立體幾何中面面垂直的證明以及求解二面角大小,難度一般,通常可采用幾何方法和向量方法兩種進(jìn)行求解.22.(1)見(jiàn)解析;(2)【解析】

(1)由折疊過(guò)程知與平面垂直,得,再取中點(diǎn),可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點(diǎn),以為原點(diǎn),所在直線為軸,在平面內(nèi)過(guò)作的垂線為軸建立空間直角坐標(biāo)系,由已知求出線段長(zhǎng),得出各點(diǎn)坐

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論