版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第01講數(shù)列的概念與簡單表示法(精講)目錄第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第二部分:課前自我評(píng)估測試第三部分:典型例題剖析題型一:利用SKIPIF1<0與SKIPIF1<0的關(guān)系求通項(xiàng)公式角度1:利用SKIPIF1<0替換SKIPIF1<0角度2:利用SKIPIF1<0替換SKIPIF1<0角度3:作差法求通項(xiàng)題型二:利用遞推關(guān)系求通項(xiàng)公式角度1:累加法角度2:累乘法角度3:構(gòu)造法角度4:倒數(shù)法題型三:數(shù)列的性質(zhì)及其應(yīng)用角度1:數(shù)列的周期性角度2:數(shù)列的單調(diào)性角度3:數(shù)列的最值第四部分:高考真題感悟第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶1、數(shù)列的有關(guān)概念概念含義數(shù)列按照一定順序排列的一列數(shù)數(shù)列的項(xiàng)數(shù)列中的每一個(gè)數(shù)數(shù)列的通項(xiàng)數(shù)列SKIPIF1<0的第SKIPIF1<0項(xiàng)SKIPIF1<0通項(xiàng)公式如果數(shù)列SKIPIF1<0的第SKIPIF1<0項(xiàng)SKIPIF1<0與序號(hào)SKIPIF1<0之間的關(guān)系能用公式SKIPIF1<0表示,這個(gè)公式叫做數(shù)列的通項(xiàng)公式前n項(xiàng)和數(shù)列SKIPIF1<0中,SKIPIF1<0叫做數(shù)列的前SKIPIF1<0項(xiàng)和2、數(shù)列的表示方法(1)列表法列出表格來表示序號(hào)與項(xiàng)的關(guān)系.(2)圖象法數(shù)列的圖象是一系列孤立的點(diǎn)SKIPIF1<0.(3)公式法①通項(xiàng)公式法:把數(shù)列的通項(xiàng)用公式表示的方法,如SKIPIF1<0.②遞推公式法:使用初始值SKIPIF1<0和SKIPIF1<0或SKIPIF1<0,SKIPIF1<0和SKIPIF1<0來表示數(shù)列的方法.3、SKIPIF1<0與SKIPIF1<0的關(guān)系若數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0.4、數(shù)列的分類分類標(biāo)準(zhǔn)類型滿足條件項(xiàng)數(shù)有窮數(shù)列項(xiàng)數(shù)有限無窮數(shù)列項(xiàng)數(shù)無限項(xiàng)與項(xiàng)間的大小關(guān)系遞增數(shù)列SKIPIF1<0其中SKIPIF1<0遞減數(shù)列SKIPIF1<0常數(shù)列SKIPIF1<0第二部分:課前自我評(píng)估測試第二部分:課前自我評(píng)估測試1.(2022·四川綿陽·高一期中)數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的一個(gè)通項(xiàng)公式SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B當(dāng)SKIPIF1<0時(shí),代入A為SKIPIF1<0,C為SKIPIF1<0,均不滿足題意;當(dāng)SKIPIF1<0時(shí),代入D為SKIPIF1<0,不滿足題意B對(duì)SKIPIF1<0,均滿足故選:B.2.(2022·四川省瀘縣第二中學(xué)模擬預(yù)測(理))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.30 B.31 C.32 D.33【答案】B解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;故選:B3.(2022·海南華僑中學(xué)高二期中)數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.11 C.SKIPIF1<0 D.12【答案】D解:因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0;故選:D4.(2022·甘肅酒泉·高二期中(理))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0##SKIPIF1<0由已知可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.5.(2022·全國·高二課時(shí)練習(xí))已知數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,從第______項(xiàng)起各項(xiàng)均大于SKIPIF1<0.【答案】SKIPIF1<0令SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0從第SKIPIF1<0項(xiàng)起,各項(xiàng)均大于SKIPIF1<0.故答案為:SKIPIF1<0.6.(2022·浙江·模擬預(yù)測)古希臘著名科學(xué)家畢達(dá)哥拉斯把1,3,6,10,15,21,….這些數(shù)量的(石子),排成一個(gè)個(gè)如圖一樣的等邊三角形,從第二行起每一行都比前一行多1個(gè)石子,像這樣的數(shù)稱為三角形數(shù).那么把三角形數(shù)從小到大排列,第10個(gè)三角形數(shù)是_________.【答案】55解析:根據(jù)題意,三角形數(shù)的每一項(xiàng)都是數(shù)列SKIPIF1<0的前n項(xiàng)的和,即SKIPIF1<0故答案為:55第三部分:典型例題剖析第三部分:典型例題剖析題型一:利用SKIPIF1<0與SKIPIF1<0的關(guān)系求通項(xiàng)公式角度1:利用SKIPIF1<0替換SKIPIF1<0例題1.(2022·河南河南·一模(理))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和是SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0的通項(xiàng)公式;【答案】SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,顯然SKIPIF1<0滿足上式,∴SKIPIF1<0;例題2.(2022·廣東茂名·高二期中)已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.求數(shù)列SKIPIF1<0的通項(xiàng)公式;【答案】(1)SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是以1為首項(xiàng),3為公比的等比數(shù)列,所以SKIPIF1<0.例題3.(2022·黑龍江·哈爾濱三中高二階段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.求SKIPIF1<0的通項(xiàng)公式;【答案】SKIPIF1<0令SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,∴SKIPIF1<0,∴數(shù)列SKIPIF1<0是首項(xiàng)為1,公比為2的等比數(shù)列,∴SKIPIF1<0;例題4.(2022·安徽師范大學(xué)附屬中學(xué)模擬預(yù)測(文))已知正項(xiàng)數(shù)列SKIPIF1<0的前項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0.求SKIPIF1<0的通項(xiàng)公式;【答案】(1)SKIPIF1<0;(1)由題意,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,由數(shù)列是正項(xiàng)數(shù)列可知,SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為1,公差為1的等差數(shù)列,所以SKIPIF1<0;方法總結(jié)已知SKIPIF1<0求SKIPIF1<0的流程(1)先令SKIPIF1<0利用SKIPIF1<0求出SKIPIF1<0;(2)當(dāng)SKIPIF1<0時(shí),用SKIPIF1<0替換SKIPIF1<0中的SKIPIF1<0得到一個(gè)新的關(guān)系式(SKIPIF1<0),利用SKIPIF1<0(SKIPIF1<0)便可求出當(dāng)SKIPIF1<0時(shí)SKIPIF1<0的表達(dá)式;(3)注意檢驗(yàn)SKIPIF1<0時(shí)的表達(dá)式是否可以與SKIPIF1<0時(shí)的表達(dá)式合并.角度2:利用SKIPIF1<0替換SKIPIF1<0例題1.(2022·黑龍江·大慶實(shí)驗(yàn)中學(xué)模擬預(yù)測(理))已知正項(xiàng)數(shù)列SKIPIF1<0滿足SKIPIF1<0,前SKIPIF1<0項(xiàng)和SKIPIF1<0滿足SKIPIF1<0求數(shù)列SKIPIF1<0的通項(xiàng)公式;【答案】(1)SKIPIF1<0;解:∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0是以1為首項(xiàng),1為公差的等差數(shù)數(shù)列,∴SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0也成立,∴SKIPIF1<0.2.(2022·遼寧·沈陽市第八十三中學(xué)高二開學(xué)考試)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0(SKIPIF1<0),SKIPIF1<0.(1)求SKIPIF1<0;(2)求數(shù)列SKIPIF1<0的通項(xiàng)公式.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)當(dāng)n≥2時(shí),由an+2SnSn-1=0得Sn-Sn-1=-2SnSn-1,所以SKIPIF1<0-SKIPIF1<0=2,又SKIPIF1<0=SKIPIF1<0=2,所以SKIPIF1<0是首項(xiàng)為2,公差為2的等差數(shù)列.可得SKIPIF1<0=2n,所以Sn=SKIPIF1<0.(2)由(1)可得,當(dāng)n≥2時(shí),an=Sn-Sn-1=SKIPIF1<0-SKIPIF1<0=-SKIPIF1<0;當(dāng)n=1時(shí),a1=SKIPIF1<0,不符合an=-SKIPIF1<0.
故SKIPIF1<0方法總結(jié):已知SKIPIF1<0與SKIPIF1<0的關(guān)系;或SKIPIF1<0與SKIPIF1<0的關(guān)系,用SKIPIF1<0替換題目中的SKIPIF1<0(注意記憶這兩個(gè)??寄P停┙嵌?:作差法求通項(xiàng)例題1.(2022·廣東·高二階段練習(xí))設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0.求SKIPIF1<0的通項(xiàng)公式;【答案】SKIPIF1<0解:數(shù)列SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),得SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,兩式相減得:SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,上式也成立.∴SKIPIF1<0;例題2.(2022·江西撫州·高二階段練習(xí)(理))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0求SKIPIF1<0的通項(xiàng)公式;【答案】SKIPIF1<0解:對(duì)任意的SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0,上述兩個(gè)等式作差可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,因此,對(duì)任意的SKIPIF1<0,SKIPIF1<0.例題3.(2022·四川·成都外國語學(xué)校高一期中(文))已知數(shù)列SKIPIF1<0是等比數(shù)列,且SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0滿足:對(duì)于任意SKIPIF1<0,有SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;【答案】SKIPIF1<0解:設(shè)數(shù)列SKIPIF1<0的公比為SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,兩式相減得:SKIPIF1<0,即SKIPIF1<0,又∵SKIPIF1<0,即SKIPIF1<0滿足上式,所以SKIPIF1<0;方法總結(jié):已知等式中左側(cè)含有:SKIPIF1<0,作差法(類似SKIPIF1<0)(注意記憶該模型)同類題型歸類練1.(2022·全國·模擬預(yù)測(理))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0①,可得:SKIPIF1<0②,兩式相減得:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故數(shù)列SKIPIF1<0是從第二項(xiàng)開始的,公比是2的等比數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0故選:C2.(2022·陜西·寶雞中學(xué)模擬預(yù)測(理))已知數(shù)列SKIPIF1<0中,對(duì)任意SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D∵SKIPIF1<0①,∴SKIPIF1<0②,②-①得SKIPIF1<0,∴SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,符合上式,∴SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0是以4為首項(xiàng),9為公比的等比數(shù)列,∴SKIPIF1<0.故選:D.3.(2022·四川省成都市新都一中高一期中(理))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0的通項(xiàng)公式為______【答案】SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,另SKIPIF1<0時(shí),SKIPIF1<0,此式不滿足SKIPIF1<0,所以SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.故答案為:SKIPIF1<0.4.(2022·遼寧·沈陽二中高二期中)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為___________.【答案】SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,①SKIPIF1<0.②①SKIPIF1<0②,得SKIPIF1<0.因?yàn)镾KIPIF1<0不滿足上式,所以SKIPIF1<0故答案為:SKIPIF1<05.(2022·山東聊城·三模)設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0.求數(shù)列SKIPIF1<0的通項(xiàng)公式;【答案】SKIPIF1<0;由SKIPIF1<0得,當(dāng)n=1時(shí),SKIPIF1<0,解得SKIPIF1<0.當(dāng)n≥2時(shí),SKIPIF1<0,從而SKIPIF1<0,即SKIPIF1<0,因此數(shù)列SKIPIF1<0是等比數(shù)列,其首項(xiàng)和公比都等于2,所以SKIPIF1<0.6.(2022·全國·高三專題練習(xí)(理))已知正項(xiàng)數(shù)列SKIPIF1<0的首項(xiàng)為1,其前SKIPIF1<0項(xiàng)和為SKIPIF1<0,滿足SKIPIF1<0.求證:數(shù)列SKIPIF1<0為等差數(shù)列,并求數(shù)列SKIPIF1<0的通項(xiàng)公式;【答案】(1)證明見解析,SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又由SKIPIF1<0,∴SKIPIF1<0是以1為首項(xiàng),1為公差的等差數(shù)列;所以SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),上式也符合,所以SKIPIF1<0.7.(2022·全國·高三專題練習(xí))設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.求證:數(shù)列SKIPIF1<0是等差數(shù)列;【答案】(1)證明見解析;(1)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,有SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公差的等差數(shù)列.題型二:利用遞推關(guān)系求通項(xiàng)公式角度1:累加法累加法(疊加法)(記憶累積法模型)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,則稱數(shù)列SKIPIF1<0為“變差數(shù)列”,求變差數(shù)列SKIPIF1<0的通項(xiàng)時(shí),利用恒等式SKIPIF1<0求通項(xiàng)公式的方法稱為累加法。具體步驟:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0將上述SKIPIF1<0個(gè)式子相加(左邊加左邊,右邊加右邊)得:SKIPIF1<0=SKIPIF1<0整理得:SKIPIF1<0=SKIPIF1<0例題1.(2022·寧夏·平羅中學(xué)高一期中(理))已知數(shù)列SKIPIF1<0中,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.求數(shù)列SKIPIF1<0的通項(xiàng)公式;【答案】(1)SKIPIF1<0解:因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0;例題2.(2022·全國·高三專題練習(xí))設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式.【答案】SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將上式累加得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,又SKIPIF1<0時(shí),SKIPIF1<0也適合,SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0例題3.(2022·全國·高三專題練習(xí))已知在數(shù)列SKIPIF1<0中,SKIPIF1<0.求數(shù)列SKIPIF1<0的通項(xiàng)公式;【答案】(1)SKIPIF1<0;(2)SKIPIF1<0解:(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,滿足條件,所以SKIPIF1<0;角度2:累乘法累乘法(疊乘法)(記憶累乘法模型)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,則稱數(shù)列SKIPIF1<0為“變比數(shù)列”,求變比數(shù)列SKIPIF1<0的通項(xiàng)時(shí),利用SKIPIF1<0求通項(xiàng)公式的方法稱為累乘法。具體步驟:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0將上述SKIPIF1<0個(gè)式子相乘(左邊乘左邊,右邊乘右邊)得:SKIPIF1<0整理得:SKIPIF1<0例題1.(2022·全國·高三專題練習(xí))在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0),求數(shù)列SKIPIF1<0的通項(xiàng)公式.【答案】SKIPIF1<0因?yàn)閍1=1,SKIPIF1<0(n≥2),所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0·…·SKIPIF1<0·1=SKIPIF1<0.又因?yàn)楫?dāng)n=1時(shí),a1=1,符合上式,所以an=SKIPIF1<0.例題2.(2022·全國·高三專題練習(xí))若數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0通項(xiàng)公式.【答案】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.例題3.(2022·浙江·寧波市北侖中學(xué)高二開學(xué)考試)已知數(shù)列{SKIPIF1<0}滿足:SKIPIF1<0=SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)且其前SKIPIF1<0項(xiàng)和為SKIPIF1<0.求SKIPIF1<0與SKIPIF1<0;【答案】(1)SKIPIF1<0;SKIPIF1<0;解:(1)由SKIPIF1<0得SKIPIF1<0,當(dāng)nSKIPIF1<02時(shí),SKIPIF1<0,又SKIPIF1<0也滿足上式,故SKIPIF1<0(nSKIPIF1<0).SKIPIF1<0∴SKIPIF1<0相減得,SKIPIF1<0∴SKIPIF1<0,角度3:構(gòu)造法用“待定系數(shù)法”構(gòu)造等比數(shù)列形如SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0)的數(shù)列,可用“待定系數(shù)法”將原等式變形為SKIPIF1<0(其中:SKIPIF1<0),由此構(gòu)造出新的等比數(shù)列SKIPIF1<0,先求出SKIPIF1<0的通項(xiàng),從而求出數(shù)列SKIPIF1<0的通項(xiàng)公式.標(biāo)準(zhǔn)模型:SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0)或SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0)例題1.(2022·陜西·綏德中學(xué)高一階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)寫出該數(shù)列的前SKIPIF1<0項(xiàng);(2)求數(shù)列SKIPIF1<0的通項(xiàng)公式;【答案】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)由SKIPIF1<0得:SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列,SKIPIF1<0,SKIPIF1<0.例題2.(2022·海南·模擬預(yù)測)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.求數(shù)列SKIPIF1<0的通項(xiàng)公式;【答案】SKIPIF1<0解:因?yàn)閿?shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,兩式相減可得SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是以3為首項(xiàng),3為公比的等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.例題3.(2022·河南·沈丘縣第一高級(jí)中學(xué)高二期末(理))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.求SKIPIF1<0的通項(xiàng)公式;【答案】(1)SKIPIF1<0,SKIPIF1<0;SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,可得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.②①-②得SKIPIF1<0,則SKIPIF1<0,而a1-1=1不為零,故SKIPIF1<0是首項(xiàng)為1,公比為2的等比數(shù)列,則SKIPIF1<0.∴數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,SKIPIF1<0.角度4:倒數(shù)法用“倒數(shù)變換法”構(gòu)造等差數(shù)列類型1:形如SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0)的數(shù)列,通過兩邊取“倒”,變形為SKIPIF1<0,即:SKIPIF1<0,從而構(gòu)造出新的等差數(shù)列SKIPIF1<0,先求出SKIPIF1<0的通項(xiàng),即可求得SKIPIF1<0.類型2:形如SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)的數(shù)列,通過兩邊取“倒”,變形為SKIPIF1<0,可通過換元:SKIPIF1<0,化簡為:SKIPIF1<0(此類型符構(gòu)造法類型1:用“待定系數(shù)法”構(gòu)造等比數(shù)列:形如SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0)的數(shù)列,可用“待定系數(shù)法”將原等式變形為SKIPIF1<0(其中:SKIPIF1<0),由此構(gòu)造出新的等比數(shù)列SKIPIF1<0,先求出SKIPIF1<0的通項(xiàng),從而求出數(shù)列SKIPIF1<0的通項(xiàng)公式.)例題1.(2022·遼寧·高二期中)已知數(shù)列SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0為等差數(shù)列.(2)求SKIPIF1<0.【答案】(1)證明見解析;(2)SKIPIF1<0.(1)證明:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列.(2)由上述可知SKIPIF1<0,∴SKIPIF1<0.例題2.(2022·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,證明:數(shù)列SKIPIF1<0是等比數(shù)列【答案】證明見解析因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0是以SKIPIF1<0為首項(xiàng),3為公比的等比數(shù)列.同類題型歸類練1.(2022·四川省瀘縣第二中學(xué)模擬預(yù)測(文))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.30 B.31 C.22 D.23【答案】B因?yàn)閿?shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:B2.(2022·陜西·長安一中高一階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】C由數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:C.3.(2022·浙江·杭州市富陽區(qū)實(shí)驗(yàn)中學(xué)高二階段練習(xí))已知SKIPIF1<0,則SKIPIF1<0(
)A.504 B.1008 C.2016 D.4032【答案】D由SKIPIF1<0可得:SKIPIF1<0,故SKIPIF1<0,故選:D.4.(2022·福建省永春第一中學(xué)高二期末)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.2 B.6 C.12 D.20【答案】D由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.故選:D5.(2022·全國·高二)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,累乘可得:SKIPIF1<0,可得:SKIPIF1<0.故選:D﹒6.(2022·浙江·模擬預(yù)測)數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則下列結(jié)論錯(cuò)誤的是(
)A.SKIPIF1<0 B.SKIPIF1<0是等比數(shù)列C.SKIPIF1<0 D.SKIPIF1<0【答案】D由SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,以此類推可知,對(duì)任意的SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以,數(shù)列SKIPIF1<0是等差數(shù)列,且該數(shù)列的首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0,其中SKIPIF1<0,C對(duì);SKIPIF1<0,所以,數(shù)列SKIPIF1<0是等比數(shù)列,B對(duì);由等差中項(xiàng)的性質(zhì)可得SKIPIF1<0,A對(duì);由上可知SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,D錯(cuò).故選:D.7.(2022·全國·高二專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則滿足SKIPIF1<0的n的最大取值為(
)A.7 B.8 C.9 D.10【答案】C解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,數(shù)列SKIPIF1<0是以1為首項(xiàng),4為公差的等差數(shù)列.所以SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0為正整數(shù),所以SKIPIF1<0的最大值為SKIPIF1<0;故選:C8.(2022·湖北·華中師大一附中模擬預(yù)測)在數(shù)列SKIPIF1<0中,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式;【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)由題意,SKIPIF1<0,得:SKIPIF1<0
,運(yùn)用累加法:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,n=1時(shí),也成立,∴SKIPIF1<0;9.(2022·全國·高三專題練習(xí))已知數(shù)列{SKIPIF1<0}中,SKIPIF1<0=1,前n項(xiàng)和SKIPIF1<0.(Ⅰ)求SKIPIF1<0(Ⅱ)求{SKIPIF1<0}的通項(xiàng)公式.【答案】SKIPIF1<010.(2022·全國·高二)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,數(shù)列SKIPIF1<0中SKIPIF1<0且滿足SKIPIF1<0.(1)求SKIPIF1<0?SKIPIF1<0的通項(xiàng)公式;【答案】(1)SKIPIF1<0,SKIPIF1<0;(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,滿足上式∴SKIPIF1<0∵SKIPIF1<0且SKIPIF1<0∴數(shù)列SKIPIF1<0是首項(xiàng)為2,公比為2的等比數(shù)列∴SKIPIF1<0,SKIPIF1<0題型三:數(shù)列的性質(zhì)及其應(yīng)用角度1:數(shù)列的周期性例題1.(2022·全國·高二課時(shí)練習(xí))在數(shù)列SKIPIF1<0中,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0等于(
)A.6 B.-6 C.3 D.-3【答案】B解:因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;故選:B例題2.(2021·全國·高二課時(shí)練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C計(jì)算得a2=SKIPIF1<0,a3=SKIPIF1<0,a4=SKIPIF1<0,a5=SKIPIF1<0,a6=SKIPIF1<0,a7=SKIPIF1<0,觀察歸納得:數(shù)列{an}是以3為周期的周期數(shù)列,又因?yàn)?016=672×3,所以a2016=a3=SKIPIF1<0.故選:C.例題3.(2021·河南信陽·高三階段練習(xí)(文))在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.-3 C.SKIPIF1<0 D.2【答案】DSKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故數(shù)列SKIPIF1<0是以4為周期的周期數(shù)列,故SKIPIF1<0,故選:D.例題4.(2022·全國·高二課時(shí)練習(xí))已知數(shù)列SKIPIF1<0,滿足SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.2 C.1 D.SKIPIF1<0【答案】A由SKIPIF1<0,且SKIPIF1<0則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,即數(shù)列SKIPIF1<0是以3為周期的周期數(shù)列所以SKIPIF1<0故選:A例題5.(2020·江西·南昌十中高三階段練習(xí)(文))數(shù)列SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】B由SKIPIF1<0,SKIPIF1<0知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0…,∴SKIPIF1<0是周期為3且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的周期數(shù)列,而SKIPIF1<0,∴SKIPIF1<0.故選:B.方法總結(jié):利用數(shù)列周期性解題的方法(試探+找規(guī)律)先利用所給數(shù)列的遞推公式,結(jié)合數(shù)列的首項(xiàng),求出數(shù)列的前幾項(xiàng),通過前幾項(xiàng)觀察發(fā)現(xiàn)數(shù)列的周期性,并確定數(shù)列的周期,然后再解決相關(guān)的問題.角度2:數(shù)列的單調(diào)性例題1.(2022·陜西·長安一中高二期末(文))若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的大小關(guān)系是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.不能確定【答案】B解:SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:B例題2.(2022·吉林·長春吉大附中實(shí)驗(yàn)學(xué)校高二期末)已知數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,且數(shù)列SKIPIF1<0是遞增數(shù)列,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C由SKIPIF1<0,∴SKIPIF1<0,即是SKIPIF1<0小于2n+1的最小值,∴SKIPIF1<0,故選:C例題3.(2022·河南·溫縣第一高級(jí)中學(xué)高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0,若數(shù)列SKIPIF1<0滿足SKIPIF1<0且SKIPIF1<0是遞增數(shù)列,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C因?yàn)閿?shù)列SKIPIF1<0是單調(diào)遞增數(shù)列,則函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),可得SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),可得SKIPIF1<0,可得SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校均衡發(fā)展工作計(jì)劃
- 中一班下學(xué)期班級(jí)計(jì)劃
- 4煤礦計(jì)劃生育工作總結(jié)及工作安排
- 2025年9月消防安全工作計(jì)劃例文
- 臨床藥師201年度工作計(jì)劃
- ui設(shè)計(jì)工作計(jì)劃
- 2025年英語培優(yōu)輔差工作計(jì)劃
- 新學(xué)期初一英語教學(xué)計(jì)劃
- 《ESD測試方法大全》課件
- 《水文、生物災(zāi)害》課件
- 社區(qū)衛(wèi)生服務(wù)中心、站基本標(biāo)準(zhǔn)
- (施工方案)國道供水管維修施工方案
- 四年級(jí)上冊(cè)生命生態(tài)安全期末復(fù)習(xí)資料
- 網(wǎng)絡(luò)安全等級(jí)保護(hù)之信息系統(tǒng)定級(jí)備案工作方案
- 畢業(yè)設(shè)計(jì)(論文)-基于AT89C52單片機(jī)的液晶顯示的數(shù)字鐘的設(shè)計(jì)與實(shí)現(xiàn)
- 《香包的制作》教學(xué)設(shè)計(jì)(優(yōu)質(zhì)課比賽教案)
- 郴州市屆高三第一次教學(xué)質(zhì)量監(jiān)測質(zhì)量分析報(bào)告(總)
- 《中國詩詞大會(huì)》原題——九宮格
- 步進(jìn)送料機(jī)設(shè)計(jì)終稿
- (精心整理)中國地形空白填圖
- 煙化爐(上海冶煉廠編)_圖文
評(píng)論
0/150
提交評(píng)論