黑龍江省密山市實驗中學2021-2022學年中考數(shù)學考前最后一卷含解析_第1頁
黑龍江省密山市實驗中學2021-2022學年中考數(shù)學考前最后一卷含解析_第2頁
黑龍江省密山市實驗中學2021-2022學年中考數(shù)學考前最后一卷含解析_第3頁
黑龍江省密山市實驗中學2021-2022學年中考數(shù)學考前最后一卷含解析_第4頁
黑龍江省密山市實驗中學2021-2022學年中考數(shù)學考前最后一卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省密山市實驗中學2021-2022學年中考數(shù)學考前最后一卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列說法中,正確的是()A.不可能事件發(fā)生的概率為0B.隨機事件發(fā)生的概率為C.概率很小的事件不可能發(fā)生D.投擲一枚質地均勻的硬幣100次,正面朝上的次數(shù)一定為50次2.輪船沿江從港順流行駛到港,比從港返回港少用3小時,若船速為26千米/時,水速為2千米/時,求港和港相距多少千米.設港和港相距千米.根據(jù)題意,可列出的方程是().A. B.C. D.3.學完分式運算后,老師出了一道題“計算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式.其中正確的是()A.小明 B.小亮 C.小芳 D.沒有正確的4.一、單選題如圖中的小正方形邊長都相等,若△MNP≌△MEQ,則點Q可能是圖中的()A.點A B.點B C.點C D.點D5.如圖所示,直線a∥b,∠1=35°,∠2=90°,則∠3的度數(shù)為()A.125° B.135° C.145° D.155°6.已知一個布袋里裝有2個紅球,3個白球和a個黃球,這些球除顏色外其余都相同.若從該布袋里任意摸出1個球,是紅球的概率為,則a等于()A. B. C. D.7.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數(shù)是()A.25° B.35° C.45° D.65°8.如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°9.一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標系中的圖象如左圖所示,則二次函數(shù)y=ax2+bx+c的圖象可能是()A. B. C. D.10.如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結論:①當0<t≤10時,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時,y=110﹣1t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤當△BPQ與△BEA相似時,t=14.1.其中正確結論的序號是()A.①④⑤ B.①②④ C.①③④ D.①③⑤二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:×(﹣2)=___________.12.某個“清涼小屋”自動售貨機出售A、B、C三種飲料.A、B、C三種飲料的單價分別是2元/瓶、3元/瓶、5元/瓶.工作日期間,每天上貨量是固定的,且能全部售出,其中,A飲科的數(shù)量(單位:瓶)是B飲料數(shù)量的2倍,B飲料的數(shù)量(單位:瓶)是C飲料數(shù)量的2倍.某個周六,A、B、C三種飲料的上貨量分別比一個工作日的上貨量增加了50%、60%、50%,且全部售出.但是由于軟件bug,發(fā)生了一起錯單(即消費者按某種飲料一瓶的價格投幣,但是取得了另一種飲料1瓶),結果這個周六的銷售收入比一個工作日的銷售收入多了503元.則這個“清涼小屋”自動售貨機一個工作日的銷售收入是_____元.13.如圖,等腰△ABC中,AB=AC=5,BC=8,點F是邊BC上不與點B,C重合的一個動點,直線DE垂直平分BF,垂足為D.當△ACF是直角三角形時,BD的長為_____.14.如圖,在等腰中,,點在以斜邊為直徑的半圓上,為的中點.當點沿半圓從點運動至點時,點運動的路徑長是________.15.若點M(1,m)和點N(4,n)在直線y=﹣x+b上,則m___n(填>、<或=)16.同時拋擲兩枚質地均勻的骰子,則事件“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的概率是.三、解答題(共8題,共72分)17.(8分)八年級(1)班學生在完成課題學習“體質健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.請你根據(jù)上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學生人,訓練后籃球定時定點投籃平均每個人的進球數(shù)是.老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.18.(8分)計算:3tan30°+|2﹣|﹣(3﹣π)0﹣(﹣1)2018.19.(8分)已知是上一點,.如圖①,過點作的切線,與的延長線交于點,求的大小及的長;如圖②,為上一點,延長線與交于點,若,求的大小及的長.20.(8分)如圖,∠A=∠D,∠B=∠E,AF=DC.求證:BC=EF.21.(8分)如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.求證:四邊形ABCD是菱形;若AB=,BD=2,求OE的長.22.(10分)某學校為增加體育館觀眾坐席數(shù)量,決定對體育館進行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設計方案是否滿足安全要求呢?請說明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)23.(12分)如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.求證:∠1=∠2;連結BE、DE,判斷四邊形BCDE的形狀,并說明理由.24.如圖,已知:正方形ABCD,點E在CB的延長線上,連接AE、DE,DE與邊AB交于點F,F(xiàn)G∥BE交AE于點G.(1)求證:GF=BF;(2)若EB=1,BC=4,求AG的長;(3)在BC邊上取點M,使得BM=BE,連接AM交DE于點O.求證:FO?ED=OD?EF.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:不可能事件發(fā)生的概率為0,故A正確;隨機事件發(fā)生的概率為在0到1之間,故B錯誤;概率很小的事件也可能發(fā)生,故C錯誤;投擲一枚質地均勻的硬幣100次,正面向上的次數(shù)為50次是隨機事件,D錯誤;故選A.考點:隨機事件.2、A【解析】

通過題意先計算順流行駛的速度為26+2=28千米/時,逆流行駛的速度為:26-2=24千米/時.根據(jù)“輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時”,得出等量關系,據(jù)此列出方程即可.【詳解】解:設A港和B港相距x千米,可得方程:故選:A.【點睛】本題考查了由實際問題抽象出一元一次方程,抓住關鍵描述語,找到等量關系是解決問題的關鍵.順水速度=水流速度+靜水速度,逆水速度=靜水速度-水流速度.3、C【解析】試題解析:=====1.所以正確的應是小芳.故選C.4、D【解析】

根據(jù)全等三角形的性質和已知圖形得出即可.【詳解】解:∵△MNP≌△MEQ,∴點Q應是圖中的D點,如圖,故選:D.【點睛】本題考查了全等三角形的性質,能熟記全等三角形的性質的內容是解此題的關鍵,注意:全等三角形的對應角相等,對應邊相等.5、A【解析】分析:如圖求出∠5即可解決問題.詳解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故選:A.點睛:本題考查平行線的性質、三角形內角和定理,鄰補角的性質等知識,解題的關鍵是靈活運用所學知識解決問題.6、A【解析】

此題考查了概率公式的應用.注意用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.根據(jù)題意得:,解得:a=1,經檢驗,a=1是原分式方程的解,故本題選A.7、A【解析】

如圖,過點C作CD∥a,再由平行線的性質即可得出結論.【詳解】如圖,過點C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【點睛】本題考查了平行線的性質與判定,根據(jù)題意作出輔助線,構造出平行線是解答此題的關鍵.8、D【解析】

根據(jù)鄰補角定義可得∠ADE=15°,由平行線的性質可得∠A=∠ADE=15°,再根據(jù)三角形內角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【點睛】本題考查了平行線的性質、三角形內角和定理等,熟練掌握平行線的性質以及三角形內角和定理是解題的關鍵.9、B【解析】

根據(jù)題中給出的函數(shù)圖像結合一次函數(shù)性質得出a<0,b>0,再由反比例函數(shù)圖像性質得出c<0,從而可判斷二次函數(shù)圖像開口向下,對稱軸:>0,即在y軸的右邊,與y軸負半軸相交,從而可得答案.【詳解】解:∵一次函數(shù)y=ax+b圖像過一、二、四,∴a<0,b>0,又∵反比例函數(shù)y=圖像經過二、四象限,∴c<0,∴二次函數(shù)對稱軸:>0,∴二次函數(shù)y=ax2+bx+c圖像開口向下,對稱軸在y軸的右邊,與y軸負半軸相交,故答案為B.【點睛】本題考查了二次函數(shù)的圖形,一次函數(shù)的圖象,反比例函數(shù)的圖象,熟練掌握二次函數(shù)的有關性質:開口方向、對稱軸、與y軸的交點坐標等確定出a、b、c的情況是解題的關鍵.10、D【解析】

根據(jù)題意,得到P、Q分別同時到達D、C可判斷①②,分段討論PQ位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據(jù)兩個點的相對位置判斷點P在DC上時,存在△BPQ與△BEA相似的可能性,分類討論計算即可.【詳解】解:由圖象可知,點Q到達C時,點P到E則BE=BC=10,ED=4故①正確則AE=10﹣4=6t=10時,△BPQ的面積等于∴AB=DC=8故故②錯誤當14<t<22時,故③正確;分別以A、B為圓心,AB為半徑畫圓,將兩圓交點連接即為AB垂直平分線則⊙A、⊙B及AB垂直平分線與點P運行路徑的交點是P,滿足△ABP是等腰三角形此時,滿足條件的點有4個,故④錯誤.∵△BEA為直角三角形∴只有點P在DC邊上時,有△BPQ與△BEA相似由已知,PQ=22﹣t∴當或時,△BPQ與△BEA相似分別將數(shù)值代入或,解得t=(舍去)或t=14.1故⑤正確故選:D.【點睛】本題是動點問題的函數(shù)圖象探究題,考查了三角形相似判定、等腰三角形判定,應用了分類討論和數(shù)形結合的數(shù)學思想.二、填空題(本大題共6個小題,每小題3分,共18分)11、-1【解析】

根據(jù)“兩數(shù)相乘,異號得負,并把絕對值相乘”即可求出結論.【詳解】故答案為【點睛】本題考查了有理數(shù)的乘法,牢記“兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘”是解題的關鍵.12、950【解析】

設工作日期間C飲料數(shù)量為x瓶,則B飲料數(shù)量為2x瓶,A飲料數(shù)量為4x瓶,得到工作日期間一天的銷售收入為:8x+6x+5x=19x元,和周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,再結合題意得到10.1x﹣(5﹣3)=503,計算即可得到答案.【詳解】解:設工作日期間C飲料數(shù)量為x瓶,則B飲料數(shù)量為2x瓶,A飲料數(shù)量為4x瓶,工作日期間一天的銷售收入為:8x+6x+5x=19x元,周六C飲料數(shù)量為1.5x瓶,則B飲料數(shù)量為3.2x瓶,A飲料數(shù)量為6x瓶,周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,周六銷售收入與工作日期間一天銷售收入的差為:29.1x﹣19x=10.1x元,由于發(fā)生一起錯單,收入的差為503元,因此,503加減一瓶飲料的差價一定是10.1的整數(shù)倍,所以這起錯單發(fā)生在B、C飲料上(B、C一瓶的差價為2元),且是消費者付B飲料的錢,取走的是C飲料;于是有:10.1x﹣(5﹣3)=503解得:x=50工作日期間一天的銷售收入為:19×50=950元,故答案為:950.【點睛】本題考查一元一次方程的實際應用,解題的關鍵是由題意得到等量關系.13、2或【解析】

分兩種情況討論:(1)當時,,利用等腰三角形的三線合一性質和垂直平分線的性質可解;(2)當時,過點A作于點M,證明列比例式求出,從而得,再利用垂直平分線的性質得.【詳解】解:(1)當時,∵垂直平分,.(2)當時,過點A作于點,在與中,.故答案為或.【點睛】本題主要考查了等腰三角形的三線合一性質和線段垂直平分線的性質定理得應用.本題難度中等.14、π【解析】

取的中點,取的中點,連接,,,則,故的軌跡為以為圓心,為半徑的半圓弧,根據(jù)弧長公式即可得軌跡長.【詳解】解:如圖,取的中點,取的中點,連接,,,∵在等腰中,,點在以斜邊為直徑的半圓上,∴,∵為的中位線,∴,∴當點沿半圓從點運動至點時,點的軌跡為以為圓心,為半徑的半圓弧,∴弧長,故答案為:.【點睛】本題考查了點的軌跡與等腰三角形的性質.解決動點問題的關鍵是在運動中,把握不變的等量關系(或函數(shù)關系),通過固定的等量關系(或函數(shù)關系),解決動點的軌跡或坐標問題.15、>【解析】

根據(jù)一次函數(shù)的性質,k<0時,y隨x的增大而減小.【詳解】因為k=﹣<0,所以函數(shù)值y隨x的增大而減小,因為1<4,所以,m>n.故答案為:>【點睛】本題考核知識點:一次函數(shù).解題關鍵點:熟記一次函數(shù)的性質.16、.【解析】試題分析:畫樹狀圖為:共有36種等可能的結果數(shù),其中“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的結果數(shù)為9,所以“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的概率==.故答案為.考點:列表法與樹狀圖法.三、解答題(共8題,共72分)17、(1)36,40,1;(2).【解析】

(1)先求出跳繩所占比例,再用比例乘以360°即可,用籃球的人數(shù)除以所占比例即可;根據(jù)加權平均數(shù)的概念計算訓練后籃球定時定點投籃人均進球數(shù).(2)畫出樹狀圖,根據(jù)概率公式求解即可.【詳解】(1)扇形圖中跳繩部分的扇形圓心角為360°×(1-10%-20%-10%-10%)=36度;

該班共有學生(2+1+7+4+1+1)÷10%=40人;

訓練后籃球定時定點投籃平均每個人的進球數(shù)是=1,

故答案為:36,40,1.(2)三名男生分別用A1,A2,A3表示,一名女生用B表示.根據(jù)題意,可畫樹形圖如下:由上圖可知,共有12種等可能的結果,選中兩名學生恰好是兩名男生(記為事件M)的結果有6種,∴P(M)==.18、1.【解析】

直接利用絕對值的性質以及特殊角的三角函數(shù)值分別化簡得出答案.【詳解】3tan31°+|2﹣|﹣(3﹣π)1﹣(﹣1)2118=3×+2﹣﹣1﹣1=+2﹣﹣1﹣1=1.【點睛】本題考查了絕對值的性質以及特殊角的三角函數(shù)值,解題的關鍵是熟練的掌握絕對值的性質以及特殊角的三角函數(shù)值.19、(Ⅰ),PA=4;(Ⅱ),【解析】

(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數(shù),由OC=4可得PA的長度(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過點C作CD⊥AB于點D,易得AD=AO=CO,在Rt△DOC中易得CD的長,即可求解【詳解】解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.∵∠OAC=60°,OA=OC,∴△OAC是等邊三角形.∴∠AOC=60°.∵PC是○O的切線,OC為○O的半徑,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如圖②,過點C作CD⊥AB于點D.∵△OAC是等邊三角形,CD⊥AB于點D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2【點睛】此題主要考查圓的綜合應用20、證明見解析.【解析】

想證明BC=EF,可利用AAS證明△ABC≌△DEF即可.【詳解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(AAS)∴BC=EF.【點睛】本題考查全等三角形的判定和性質,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.21、(1)見解析;(1)OE=1.【解析】

(1)先判斷出∠OAB=∠DCA,進而判斷出∠DAC=∠DAC,得出CD=AD=AB,即可得出結論;

(1)先判斷出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出結論.【詳解】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC為∠DAB的平分線,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四邊形ABCD是平行四邊形,∵AD=AB,∴?ABCD是菱形;(1)∵四邊形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=1,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==1,∴OE=OA=1.【點睛】此題主要考查了菱形的判定和性質,平行四邊形的判定和性質,角平分線的定義,勾股定理,判斷出CD=AD=AB是解本題的關鍵22、不滿足安全要求,理由見解析.【解析】

在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設計方案不滿足安全要求”.【詳解】解:施工方提供的設計方案不滿足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論