版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省西安市西北大附屬中學(xué)2022年中考數(shù)學(xué)四模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列美麗的圖案中,不是軸對(duì)稱圖形的是()A. B. C. D.2.一個(gè)盒子內(nèi)裝有大小、形狀相同的四個(gè)球,其中紅球1個(gè)、綠球1個(gè)、白球2個(gè),小明摸出一個(gè)球不放回,再摸出一個(gè)球,則兩次都摸到白球的概率是()A. B. C. D.3.化簡(jiǎn)的結(jié)果是()A.1 B. C. D.4.如圖,已知矩形ABCD中,BC=2AB,點(diǎn)E在BC邊上,連接DE、AE,若EA平分∠BED,則的值為()A. B. C. D.5.如圖,在△ABC中,AB=AC,∠A=30°,AB的垂直平分線l交AC于點(diǎn)D,則∠CBD的度數(shù)為()A.30° B.45° C.50° D.75°6.小明乘出租車去體育場(chǎng),有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時(shí)的平均車速能提高80%,因此能比走路線一少用10分鐘到達(dá).若設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),根據(jù)題意,得A.25x-C.30(1+80%)x-7.在一個(gè)口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,隨機(jī)地摸出一個(gè)小球然后放回,再隨機(jī)地摸出一個(gè)小球.則兩次摸出的小球的標(biāo)號(hào)的和等于6的概率為()A. B. C. D.8.如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點(diǎn),將△ABC沿DE折疊,使點(diǎn)B落在AC邊上點(diǎn)F處,并且DF∥BC,若CF=3,BC=9,則AB的長(zhǎng)是()A. B.15 C. D.99.計(jì)算的結(jié)果是()A.1 B.-1 C. D.10.如圖,等腰三角形ABC底邊BC的長(zhǎng)為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點(diǎn)E,交AC于點(diǎn)F,若D為BC邊上的中點(diǎn),M為線段EF上一點(diǎn),則△BDM的周長(zhǎng)最小值為()A.5cm B.6cm C.8cm D.10cm11.如圖,點(diǎn)C、D是線段AB上的兩點(diǎn),點(diǎn)D是線段AC的中點(diǎn).若AB=10cm,BC=4cm,則線段DB的長(zhǎng)等于()A.2cm B.3cm C.6cm D.7cm12.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為()A.25° B.50° C.60° D.30°二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.計(jì)算:+=______.14.計(jì)算(-2)×3+(-3)=_______________.15.現(xiàn)有三張分別標(biāo)有數(shù)字2、3、4的卡片,它們除了數(shù)字外完全相同,把卡片背面朝上洗勻,從中任意抽取一張,將上面的數(shù)字記為a(不放回);從剩下的卡片中再任意抽取一張,將上面的數(shù)字記為b,則點(diǎn)(a,b)在直線圖象上的概率為__.16.閱讀下面材料:數(shù)學(xué)活動(dòng)課上,老師出了一道作圖問題:“如圖,已知直線l和直線l外一點(diǎn)P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點(diǎn)Q.”小艾的作法如下:(1)在直線l上任取點(diǎn)A,以A為圓心,AP長(zhǎng)為半徑畫?。?)在直線l上任取點(diǎn)B,以B為圓心,BP長(zhǎng)為半徑畫?。?)兩弧分別交于點(diǎn)P和點(diǎn)M(4)連接PM,與直線l交于點(diǎn)Q,直線PQ即為所求.老師表揚(yáng)了小艾的作法是對(duì)的.請(qǐng)回答:小艾這樣作圖的依據(jù)是_____.17.如果梯形的中位線長(zhǎng)為6,一條底邊長(zhǎng)為8,那么另一條底邊長(zhǎng)等于__________.18.2018年1月4日在萍鄉(xiāng)市第十五屆人民代表大會(huì)第三次會(huì)議報(bào)告指出,去年我市城鎮(zhèn)居民人均可支配收入33080元,33080用科學(xué)記數(shù)法可表示為__.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)進(jìn)入冬季,某商家根據(jù)市民健康需要,代理銷售一種防塵口罩,進(jìn)貨價(jià)為20元/包,經(jīng)市場(chǎng)銷售發(fā)現(xiàn):銷售單價(jià)為30元/包時(shí),每周可售出200包,每漲價(jià)1元,就少售出5包.若供貨廠家規(guī)定市場(chǎng)價(jià)不得低于30元/包.試確定周銷售量y(包)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式;試確定商場(chǎng)每周銷售這種防塵口罩所獲得的利潤w(元)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式,并直接寫出售價(jià)x的范圍;當(dāng)售價(jià)x(元/包)定為多少元時(shí),商場(chǎng)每周銷售這種防塵口罩所獲得的利潤w(元)最大?最大利潤是多少?20.(6分)某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?(2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬元,乙隊(duì)為0.25萬元,要使這次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?21.(6分)如圖,已知A(3,0),B(0,﹣1),連接AB,過B點(diǎn)作AB的垂線段BC,使BA=BC,連接AC.如圖1,求C點(diǎn)坐標(biāo);如圖2,若P點(diǎn)從A點(diǎn)出發(fā)沿x軸向左平移,連接BP,作等腰直角△BPQ,連接CQ,當(dāng)點(diǎn)P在線段OA上,求證:PA=CQ;在(2)的條件下若C、P,Q三點(diǎn)共線,求此時(shí)∠APB的度數(shù)及P點(diǎn)坐標(biāo).22.(8分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),連接CD,過點(diǎn)D作DH⊥x軸于點(diǎn)H,過點(diǎn)A作AE⊥AC交DH的延長(zhǎng)線于點(diǎn)E.(1)求線段DE的長(zhǎng)度;(2)如圖2,試在線段AE上找一點(diǎn)F,在線段DE上找一點(diǎn)P,且點(diǎn)M為直線PF上方拋物線上的一點(diǎn),求當(dāng)△CPF的周長(zhǎng)最小時(shí),△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點(diǎn)K,則是否存在這樣的點(diǎn)K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.23.(8分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點(diǎn)B,連接CO并延長(zhǎng)交⊙O于點(diǎn)D、E,連接AD并延長(zhǎng)交BC于點(diǎn)F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;(2)求證:(3)若BC=AB,求tan∠CDF的值.24.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于C(0,3),直線y=+m經(jīng)過點(diǎn)C,與拋物線的另一交點(diǎn)為點(diǎn)D,點(diǎn)P是直線CD上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.(1)求拋物線解析式并求出點(diǎn)D的坐標(biāo);(2)連接PD,△CDP的面積是否存在最大值?若存在,請(qǐng)求出面積的最大值;若不存在,請(qǐng)說明理由;(3)當(dāng)△CPE是等腰三角形時(shí),請(qǐng)直接寫出m的值.25.(10分)已知開口向下的拋物線y=ax2-2ax+2與y軸的交點(diǎn)為A,頂點(diǎn)為B,對(duì)稱軸與x軸的交點(diǎn)為C,點(diǎn)A與點(diǎn)D關(guān)于對(duì)稱軸對(duì)稱,直線BD與x軸交于點(diǎn)M,直線AB與直線OD交于點(diǎn)N.(1)求點(diǎn)D的坐標(biāo).(2)求點(diǎn)M的坐標(biāo)(用含a的代數(shù)式表示).(3)當(dāng)點(diǎn)N在第一象限,且∠OMB=∠ONA時(shí),求a的值.26.(12分)如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測(cè)角儀AB,在A處測(cè)得電線桿上C處的仰角為30°,求拉線CE的長(zhǎng)(結(jié)果保留小數(shù)點(diǎn)后一位,參考數(shù)據(jù):).27.(12分)如圖,在□ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E在BD的延長(zhǎng)線上,且△EAC是等邊三角形.(1)求證:四邊形ABCD是菱形.(2)若AC=8,AB=5,求ED的長(zhǎng).
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】
根據(jù)軸對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:A、不是軸對(duì)稱圖形,故本選項(xiàng)正確;B、是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C、是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D、是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選A.【點(diǎn)睛】本題考查了軸對(duì)稱圖形的概念,軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合.2、C【解析】
畫樹狀圖求出共有12種等可能結(jié)果,符合題意得有2種,從而求解.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【點(diǎn)睛】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準(zhǔn)確求出所有的等可能結(jié)果及符合題意的結(jié)果是本題的解題關(guān)鍵.3、A【解析】原式=?(x–1)2+=+==1,故選A.4、C【解析】
過點(diǎn)A作AF⊥DE于F,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得AF=AB,利用全等三角形的判定和性質(zhì)以及矩形的性質(zhì)解答即可.【詳解】解:如圖,過點(diǎn)A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD與△DCE中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面積=△AFD的面積=∵矩形ABCD的面積=AB?BC=2AB2,∴2△ABE的面積=矩形ABCD的面積﹣2△CDE的面積=(2﹣)AB2,∴△ABE的面積=,∴,故選:C.【點(diǎn)睛】本題考查了矩形的性質(zhì),角平分線上的點(diǎn)到角的兩邊距離相等的性質(zhì),以及全等三角形的判定與性質(zhì),關(guān)鍵是根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得AF=AB.5、B【解析】試題解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分線交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故選B.6、A【解析】若設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),根據(jù)路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時(shí)的平均車速能提高80%,因此能比走路線一少用10分鐘到達(dá)可列出方程.解:設(shè)走路線一時(shí)的平均速度為x千米/小時(shí),25故選A.7、C【解析】列舉出所有情況,看兩次摸出的小球的標(biāo)號(hào)的和等于6的情況數(shù)占總情況數(shù)的多少即可.解:共16種情況,和為6的情況數(shù)有3種,所以概率為.故選C.8、C【解析】
由折疊得到EB=EF,∠B=∠DFE,根據(jù)CE+EB=9,得到CE+EF=9,設(shè)EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出EF與CE的長(zhǎng),由FD與BC平行,得到一對(duì)內(nèi)錯(cuò)角相等,等量代換得到一對(duì)同位角相等,進(jìn)而確定出EF與AB平行,由平行得比例,即可求出AB的長(zhǎng).【詳解】由折疊得到EB=EF,∠B=∠DFE,在Rt△ECF中,設(shè)EF=EB=x,得到CE=BC-EB=9-x,根據(jù)勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴,則AB===,故選C.【點(diǎn)睛】此題考查了翻折變換(折疊問題),涉及的知識(shí)有:勾股定理,平行線的判定與性質(zhì),平行線分線段成比例,熟練掌握折疊的性質(zhì)是解本題的關(guān)鍵.9、C【解析】
原式通分并利用同分母分式的減法法則計(jì)算,即可得到結(jié)果.【詳解】解:==,故選:C.【點(diǎn)睛】此題考查了分式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.10、C【解析】
連接AD,由于△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長(zhǎng),再根據(jù)EF是線段AB的垂直平分線可知,點(diǎn)B關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)A,故AD的長(zhǎng)為BM+MD的最小值,由此即可得出結(jié)論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點(diǎn)B關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)A,∴AD的長(zhǎng)為BM+MD的最小值,∴△BDM的周長(zhǎng)最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點(diǎn)睛】本題考查的是軸對(duì)稱﹣?zhàn)疃搪肪€問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關(guān)鍵.11、D【解析】【分析】先求AC,再根據(jù)點(diǎn)D是線段AC的中點(diǎn),求出CD,再求BD.【詳解】因?yàn)?,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因?yàn)椋c(diǎn)D是線段AC的中點(diǎn),所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故選D【點(diǎn)睛】本題考核知識(shí)點(diǎn):線段的中點(diǎn),和差.解題關(guān)鍵點(diǎn):利用線段的中點(diǎn)求出線段長(zhǎng)度.12、A【解析】如圖,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故選A.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1.【解析】
利用同分母分式加法法則進(jìn)行計(jì)算,分母不變,分子相加.【詳解】解:原式=.【點(diǎn)睛】本題考查同分母分式的加法,掌握法則正確計(jì)算是本題的解題關(guān)鍵.14、-9【解析】
根據(jù)有理數(shù)的計(jì)算即可求解.【詳解】(-2)×3+(-3)=-6-3=-9【點(diǎn)睛】此題主要考查有理數(shù)的混合運(yùn)算,解題的關(guān)鍵是熟知有理數(shù)的運(yùn)算法則.15、【解析】
根據(jù)題意列出圖表,即可表示(a,b)所有可能出現(xiàn)的結(jié)果,根據(jù)一次函數(shù)的性質(zhì)求出在圖象上的點(diǎn),即可得出答案.【詳解】畫樹狀圖得:
∵共有6種等可能的結(jié)果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直線圖象上的只有(3,2),
∴點(diǎn)(a,b)在圖象上的概率為.【點(diǎn)睛】本題考查了用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意此題屬于不放回實(shí)驗(yàn).16、到線段兩端距離相等的點(diǎn)在線段的垂直平分線上或兩點(diǎn)確定一條直線或sss或全等三角形對(duì)應(yīng)角相等或等腰三角形的三線合一【解析】
從作圖方法以及作圖結(jié)果入手考慮其作圖依據(jù)..【詳解】解:依題意,AP=AM,BP=BM,根據(jù)垂直平分線的定義可知PM⊥直線l.因此易知小艾的作圖依據(jù)是到線段兩端距離相等的點(diǎn)在線段的垂直平分線上;兩點(diǎn)確定一條直線.故答案為到線段兩端距離相等的點(diǎn)在線段的垂直平分線上;兩點(diǎn)確定一條直線.【點(diǎn)睛】本題主要考查尺規(guī)作圖,掌握尺規(guī)作圖的常用方法是解題關(guān)鍵.17、4.【解析】
只需根據(jù)梯形的中位線定理“梯形的中位線等于兩底和的一半”,進(jìn)行計(jì)算.【詳解】解:根據(jù)梯形的中位線定理“梯形的中位線等于兩底和的一半”,則另一條底邊長(zhǎng).故答案為:4【點(diǎn)睛】本題考查梯形中位線,用到的知識(shí)點(diǎn)為:梯形的中位線=(上底+下底)18、3.308×1.【解析】
正確用科學(xué)計(jì)數(shù)法表示即可.【詳解】解:33080=3.308×1【點(diǎn)睛】科學(xué)記數(shù)法的表示形式為的形式,其中1<|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值小于1時(shí),n是負(fù)數(shù).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)當(dāng)售價(jià)定為45元時(shí),商場(chǎng)每周銷售這種防塵口罩所獲得的利潤w(元)最大,最大利潤是1元.【解析】試題分析:(1)根據(jù)題意可以直接寫出y與x之間的函數(shù)關(guān)系式;(2)根據(jù)題意可以直接寫出w與x之間的函數(shù)關(guān)系式,由供貨廠家規(guī)定市場(chǎng)價(jià)不得低于30元/包,且商場(chǎng)每周完成不少于150包的銷售任務(wù)可以確定x的取值范圍;(3)根據(jù)第(2)問中的函數(shù)解析式和x的取值范圍,可以解答本題.試題解析:解:(1)由題意可得:y=200﹣(x﹣30)×5=﹣5x+350即周銷售量y(包)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式是:y=﹣5x+350;(2)由題意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤70),即商場(chǎng)每周銷售這種防塵口罩所獲得的利潤w(元)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1∵二次項(xiàng)系數(shù)﹣5<0,∴x=45時(shí),w取得最大值,最大值為1.答:當(dāng)售價(jià)定為45元時(shí),商場(chǎng)每周銷售這種防塵口罩所獲得的利潤最大,最大利潤是1元.點(diǎn)睛:本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是明確題意,可以寫出相應(yīng)的函數(shù)解析式,并確定自變量的取值范圍以及可以求出函數(shù)的最值.20、(1)111,51;(2)11.【解析】
(1)設(shè)乙工程隊(duì)每天能完成綠化的面積是x(m2),根據(jù)在獨(dú)立完成面積為411m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天,列出方程,求解即可;(2)設(shè)應(yīng)安排甲隊(duì)工作y天,根據(jù)這次的綠化總費(fèi)用不超過8萬元,列出不等式,求解即可.【詳解】解:(1)設(shè)乙工程隊(duì)每天能完成綠化的面積是x(m2),根據(jù)題意得:解得:x=51,經(jīng)檢驗(yàn)x=51是原方程的解,則甲工程隊(duì)每天能完成綠化的面積是51×2=111(m2),答:甲、乙兩工程隊(duì)每天能完成綠化的面積分別是111m2、51m2;(2)設(shè)應(yīng)安排甲隊(duì)工作y天,根據(jù)題意得:1.4y+×1.25≤8,解得:y≥11,答:至少應(yīng)安排甲隊(duì)工作11天.21、(1)C(1,-4).(2)證明見解析;(3)∠APB=135°,P(1,0).【解析】
(1)作CH⊥y軸于H,證明△ABO≌△BCH,根據(jù)全等三角形的性質(zhì)得到BH=OA=3,CH=OB=1,求出OH,得到C點(diǎn)坐標(biāo);(2)證明△PBA≌△QBC,根據(jù)全等三角形的性質(zhì)得到PA=CQ;(3)根據(jù)C、P,Q三點(diǎn)共線,得到∠BQC=135°,根據(jù)全等三角形的性質(zhì)得到∠BPA=∠BQC=135°,根據(jù)等腰三角形的性質(zhì)求出OP,得到P點(diǎn)坐標(biāo).【詳解】(1)作CH⊥y軸于H,則∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C點(diǎn)坐標(biāo)為(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,當(dāng)C、P,Q三點(diǎn)共線時(shí),∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P點(diǎn)坐標(biāo)為(1,0).【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì)、三角形的外角的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.22、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標(biāo),進(jìn)而求得D的坐標(biāo),即可求得DH的長(zhǎng)度,令y=0,求得A,B的坐標(biāo),然后證得△ACO∽△EAH,根據(jù)對(duì)應(yīng)邊成比例求得EH的長(zhǎng),進(jìn)繼而求得DE的長(zhǎng);(2)找點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對(duì)稱點(diǎn)G(-2,-),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時(shí),△CPF周長(zhǎng)=CF+PF+CP=GF+PF+PN最小,根據(jù)點(diǎn)的坐標(biāo)求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進(jìn)而得出△CFP為等邊三角形,邊長(zhǎng)為,翻折之后形成邊長(zhǎng)為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對(duì)于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對(duì)稱點(diǎn)G(﹣2,﹣),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時(shí),△CPF周長(zhǎng)=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,﹣m2+m+),則Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵對(duì)稱軸為:直線m=<2,開口向下,∴m=時(shí),△MPF面積有最大值:;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP為等邊三角形,邊長(zhǎng)為,翻折之后形成邊長(zhǎng)為的菱形C′F′P′F″,且F′F″=4,1)當(dāng)KF′=KF″時(shí),如圖3,點(diǎn)K在F′F″的垂直平分線上,所以K與B重合,坐標(biāo)為(3,0),∴OK=3;2)當(dāng)F′F″=F′K時(shí),如圖4,∴F′F″=F′K=4,∵FP的解析式為:y=x﹣,∴在平移過程中,F(xiàn)′K與x軸的夾角為30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)當(dāng)F″F′=F″K時(shí),如圖5,∵在平移過程中,F(xiàn)″F′始終與x軸夾角為60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,綜上所述:OK=3,4﹣1,4+1或者1.點(diǎn)睛:本題是二次函數(shù)的綜合題,考查了二次函數(shù)的交點(diǎn)和待定系數(shù)法求二次函數(shù)的解析式以及最值問題,考查了三角形相似的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰三角形的性質(zhì)等,分類討論的思想是解題的關(guān)鍵.23、(1)∠CBD與∠CEB相等,證明見解析;(2)證明見解析;(3)tan∠CDF=.【解析】試題分析:(1)由AB是⊙O的直徑,BC切⊙O于點(diǎn)B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,從而可得∠A=∠CBD,結(jié)合∠A=∠CEB即可得到∠CBD=∠CEB;(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,從而可得△EBC∽△BDC,再由相似三角形的性質(zhì)即可得到結(jié)論;(3)設(shè)AB=2x,結(jié)合BC=AB,AB是直徑,可得BC=3x,OB=OD=x,再結(jié)合∠ABC=90°,可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,從而可得△DCF∽△BCD,由此可得:==,這樣即可得到tan∠CDF=tan∠DBF==.試題解析:(1)∠CBD與∠CEB相等,理由如下:∵BC切⊙O于點(diǎn)B,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,(2)∵∠C=∠C,∠CEB=∠CBD,∴∠EBC=∠BDC,∴△EBC∽△BDC,∴;(3)設(shè)AB=2x,∵BC=AB,AB是直徑,∴BC=3x,OB=OD=x,∵∠ABC=90°,∴OC=x,∴CD=(-1)x,∵AO=DO,∴∠CDF=∠A=∠DBF,∴△DCF∽△BCD,∴==,∵tan∠DBF==,∴tan∠CDF=.點(diǎn)睛:解答本題第3問的要點(diǎn)是:(1)通過證∠CDF=∠A=∠DBF,把求tan∠CDF轉(zhuǎn)化為求tan∠DBF=;(2)通過證△DCF∽△BCD,得到.24、(1)y=﹣x2+2x+3,D點(diǎn)坐標(biāo)為();(2)當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】
(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點(diǎn)坐標(biāo);
(2)設(shè)P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問題;
(3)討論:當(dāng)PC=PE時(shí),m2+(-m2+2m+3-3)2=(-m2+m)2;當(dāng)CP=CE時(shí),m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當(dāng)EC=EP時(shí),m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點(diǎn)坐標(biāo)為(,);(2)存在.設(shè)P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;(3)當(dāng)PC=PE時(shí),m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當(dāng)CP=CE時(shí),m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當(dāng)EC=EP時(shí),m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點(diǎn)睛】本題考核知識(shí)點(diǎn):二次函數(shù)的綜合應(yīng)用.解題關(guān)鍵點(diǎn):靈活運(yùn)用二次函數(shù)性質(zhì),運(yùn)用數(shù)形結(jié)合思想.25、(1)D(2,2);(2);(3)【解析】
(1)令x=0求出A的坐標(biāo),根據(jù)頂點(diǎn)坐標(biāo)公式或配方法求出頂點(diǎn)B的坐標(biāo)、對(duì)稱軸直線,根據(jù)點(diǎn)A與點(diǎn)D關(guān)于對(duì)稱軸對(duì)稱,確定D點(diǎn)坐標(biāo).(2)根據(jù)點(diǎn)B、D的坐標(biāo)用待定系數(shù)法求出直線BD的解析式,令y=0,即可求得M點(diǎn)的坐標(biāo).(3)根據(jù)點(diǎn)A、B的坐標(biāo)用待定系數(shù)法求出直線AB的解析式,求直線OD的解析式,進(jìn)而求出交點(diǎn)N的坐標(biāo),得到ON的長(zhǎng).過A點(diǎn)作AE⊥OD,可證△AOE為等腰直角三角形,根據(jù)OA=2,可求得AE、OE的長(zhǎng),表示出EN的長(zhǎng).根據(jù)tan∠OMB=tan∠ONA,得到比例式,代入數(shù)值即可求得a的值.【詳解】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度施工現(xiàn)場(chǎng)安全責(zé)任險(xiǎn)投保協(xié)議責(zé)任書3篇
- 脫硫設(shè)備選型課程設(shè)計(jì)
- 二零二五年安全防護(hù)設(shè)備研發(fā)與推廣合同2篇
- 2024年校園宿舍運(yùn)營管理合同3篇
- 2025年粵教版九年級(jí)地理下冊(cè)階段測(cè)試試卷
- 2025年度物流與供應(yīng)鏈管理合作協(xié)議3篇
- 二零二五年度建筑公司項(xiàng)目終止及工程驗(yàn)收及交付協(xié)議2篇
- 2024年運(yùn)營高級(jí)經(jīng)理聘請(qǐng)合同2篇
- 二零二五年度信息安全保密保密協(xié)議正規(guī)范2篇
- 二零二五年度建筑材料貿(mào)易代理合同樣本2篇
- 2024年計(jì)算機(jī)二級(jí)WPS考試題庫(共380題含答案)
- 施工現(xiàn)場(chǎng)環(huán)境因素識(shí)別、評(píng)價(jià)及環(huán)境因素清單、控制措施
- 【9道期末】安徽省宣城市2023-2024學(xué)年九年級(jí)上學(xué)期期末道德與法治試題(含解析)
- 2024年醫(yī)藥行業(yè)年終總結(jié).政策篇 易聯(lián)招采2024
- 《工程造價(jià)專業(yè)應(yīng)用型本科畢業(yè)設(shè)計(jì)指導(dǎo)標(biāo)準(zhǔn)》
- 倉庫主管2025年終總結(jié)及2025工作計(jì)劃
- 兒科護(hù)士述職報(bào)告2024
- 2024年01月11396藥事管理與法規(guī)(本)期末試題答案
- 股權(quán)投資協(xié)議的風(fēng)險(xiǎn)控制
- 酒店微笑服務(wù)培訓(xùn)
- 廣州英語小學(xué)六年級(jí)英語六上冊(cè)作文范文1-6單元
評(píng)論
0/150
提交評(píng)論