版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省淄博市周村縣達標名校2025屆初三畢業(yè)班3月適應性線上測試(一)數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點P,則∠P=()A.90°-α B.90°+α C. D.360°-α2.如圖是由幾個大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小正方體的個數(shù),則該幾何體的左視圖是()A. B.C. D.3.下列四個圖形中,是中心對稱圖形的是()A. B. C. D.4.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.5.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.106.下列運算正確的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2?a3=a6D.5a+2b=7ab7.下列各曲線中表示y是x的函數(shù)的是()A. B. C. D.8.如果,那么代數(shù)式的值為()A.1 B.2 C.3 D.49.如圖,在平面直角坐標系中,以O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標為(2a,b+1),則a與b的數(shù)量關系為A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=110.如圖,把一個矩形紙片ABCD沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°二、填空題(本大題共6個小題,每小題3分,共18分)11.直線y=x與雙曲線y=在第一象限的交點為(a,1),則k=_____.12.如圖,在正五邊形ABCDE中,AC與BE相交于點F,則∠AFE的度數(shù)為_____.13.如圖,在4×4正方形網格中,黑色部分的圖形構成一個軸對稱圖形,現(xiàn)在任選取一個白色的小正方形并涂黑,使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是_____.14.若﹣4xay+x2yb=﹣3x2y,則a+b=_____.15.PA、PB分別切⊙O于點A、B,∠PAB=60°,點C在⊙O上,則∠ACB的度數(shù)為_____.16.A,B兩市相距200千米,甲車從A市到B市,乙車從B市到A市,兩車同時出發(fā),已知甲車速度比乙車速度快15千米/小時,且甲車比乙車早半小時到達目的地.若設乙車的速度是x千米/小時,則根據題意,可列方程____________.三、解答題(共8題,共72分)17.(8分)如圖,在邊長為1個單位長度的小正方形網格中:(1)畫出△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1.(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,請在網格中畫出△A2B2C2.(3)求△CC1C2的面積.18.(8分)如圖,拋物線l:y=(x﹣h)2﹣2與x軸交于A,B兩點(點A在點B的左側),將拋物線ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數(shù)?的圖象.(1)若點A的坐標為(1,0).①求拋物線l的表達式,并直接寫出當x為何值時,函數(shù)?的值y隨x的增大而增大;②如圖2,若過A點的直線交函數(shù)?的圖象于另外兩點P,Q,且S△ABQ=2S△ABP,求點P的坐標;(2)當2<x<3時,若函數(shù)f的值隨x的增大而增大,直接寫出h的取值范圍.19.(8分)如圖,直線l切⊙O于點A,點P為直線l上一點,直線PO交⊙O于點C、B,點D在線段AP上,連接DB,且AD=DB.(1)求證:DB為⊙O的切線;(2)若AD=1,PB=BO,求弦AC的長.20.(8分)已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(A在B左),y軸交于點C(0,-3).(1)求拋物線的解析式;(2)若點D是線段BC下方拋物線上的動點,求四邊形ABCD面積的最大值;(3)若點E在x軸上,點P在拋物線上.是否存在以B、C、E、P為頂點且以BC為一邊的平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.21.(8分)如圖,在平面直角坐標系中,正方形的邊長為,頂點、分別在軸、軸的正半軸,拋物線經過、兩點,點為拋物線的頂點,連接、、.求此拋物線的解析式.求此拋物線頂點的坐標和四邊形的面積.22.(10分)如圖,在四邊形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四邊形ABCD的周長.23.(12分)某商場將每件進價為80元的某種商品原來按每件100元出售,一天可售出100件.后來經過市場調查,發(fā)現(xiàn)這種商品單價每降低1元,其銷量可增加10件.(1)求商場經營該商品原來一天可獲利潤多少元?(2)設后來該商品每件降價x元,商場一天可獲利潤y元.①若商場經營該商品一天要獲利潤2160元,則每件商品應降價多少元?②求出y與x之間的函數(shù)關系式,并通過畫該函數(shù)圖象的草圖,觀察其圖象的變化趨勢,結合題意寫出當x取何值時,商場獲利潤不少于2160元.24.(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點:1.多邊形內角與外角2.三角形內角和定理.2、D【解析】根據俯視圖中每列正方形的個數(shù),再畫出從正面的,左面看得到的圖形:幾何體的左視圖是:
.故選D.3、D【解析】試題分析:根據中心對稱圖形的定義,結合選項所給圖形進行判斷即可.解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項正確;故選D.考點:中心對稱圖形.4、B【解析】試題分析:結合三個視圖發(fā)現(xiàn),應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.5、D【解析】
根據有理數(shù)乘法法則計算.【詳解】﹣2×(﹣5)=+(2×5)=10.故選D.考查了有理數(shù)的乘法法則,(1)兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;(2)任何數(shù)同0相乘,都得0;(3)幾個不等于0的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積為負;當負因數(shù)有偶數(shù)個時,積為正;(4)幾個數(shù)相乘,有一個因數(shù)為0時,積為0.6、B【解析】
A選項:利用同底數(shù)冪的除法法則,底數(shù)不變,只把指數(shù)相減即可;
B選項:利用平方差公式,應先把2a看成一個整體,應等于(2a)2-b2而不是2a2-b2,故本選項錯誤;
C選項:先把(-a)2化為a2,然后利用同底數(shù)冪的乘法法則,底數(shù)不變,只把指數(shù)相加,即可得到;
D選項:兩項不是同類項,故不能進行合并.【詳解】A選項:a6÷a2=a4,故本選項錯誤;
B選項:(2a+b)(2a-b)=4a2-b2,故本選項正確;
C選項:(-a)2?a3=a5,故本選項錯誤;
D選項:5a與2b不是同類項,不能合并,故本選項錯誤;
故選:B.考查學生同底數(shù)冪的乘除法法則的運用以及對平方差公式的掌握,同時要求學生對同類項進行正確的判斷.7、D【解析】根據函數(shù)的意義可知:對于自變量x的任何值,y都有唯一的值與之相對應,故D正確.故選D.8、A【解析】
先計算括號內分式的減法,再將除法轉化為乘法,最后約分即可化簡原式,繼而將3x=4y代入即可得.【詳解】解:∵原式===∵3x-4y=0,∴3x=4y原式==1故選:A.本題主要考查分式的化簡求值,解題的關鍵是熟練掌握分式的混合運算順序和運算法則.9、B【解析】試題分析:根據作圖方法可得點P在第二象限角平分線上,則P點橫縱坐標的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.10、C【解析】
首先根據AD∥BC,求出∠FED的度數(shù),然后根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大?。驹斀狻拷猓骸逜D∥BC,∴∠EFB=∠FED=65°,由折疊的性質知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.此題考查了長方形的性質與折疊的性質.此題比較簡單,解題的關鍵是注意數(shù)形結合思想的應用.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】分析:首先根據正比例函數(shù)得出a的值,然后將交點坐標代入反比例函數(shù)解析式得出k的值.詳解:將(a,1)代入正比例函數(shù)可得:a=1,∴交點坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是利用待定系數(shù)法求函數(shù)解析式,屬于基礎題型.根據正比例函數(shù)得出交點坐標是解題的關鍵.12、72°【解析】
首先根據正五邊形的性質得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.本題考查的是正多邊形和圓,利用數(shù)形結合求解是解答此題的關鍵13、【解析】如圖,有5種不同取法;故概率為.14、1【解析】
兩個單項式合并成一個單項式,說明這兩個單項式為同類項.【詳解】解:由同類項的定義可知,a=2,b=1,∴a+b=1.故答案為:1.本題考查的知識點為:同類項中相同字母的指數(shù)是相同的.15、60°或120°.【解析】
連接OA、OB,根據切線的性質得出∠OAP的度數(shù),∠OBP的度數(shù);再根據四邊形的內角和是360°,求出∠AOB的度數(shù),有圓周角定理或圓內接四邊形的性質,求出∠ACB的度數(shù)即可.【詳解】解:連接OA、OB.∵PA,PB分別切⊙O于點A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=60°,∴在四邊形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,∴即當C在D處時,∠ACB=60°.在四邊形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.于是∠ACB的度數(shù)為60°或120°,故答案為60°或120°.本題考查的是切線的性質定理,圓內接四邊形的性質,是一道基礎題.16、200x【解析】
直接利用甲車比乙車早半小時到達目的地得出等式即可.【詳解】解:設乙車的速度是x千米/小時,則根據題意,可列方程:200x故答案為:200x此題主要考查了由實際問題抽象出分式方程,正確表示出兩車所用時間是解題關鍵.三、解答題(共8題,共72分)17、(1)見解析(2)見解析(3)9【解析】試題分析:(1)將△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1,如圖所示;(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,如圖所示.試題解析:(1)根據題意畫出圖形,△A1B1C1為所求三角形;(2)根據題意畫出圖形,△A2B2C2為所求三角形.考點:1.作圖-位似變換,2.作圖-平移變換18、(1)①當1<x<3或x>5時,函數(shù)?的值y隨x的增大而增大,②P(,);(2)當3≤h≤4或h≤0時,函數(shù)f的值隨x的增大而增大.【解析】試題分析:(1)①利用待定系數(shù)法求拋物線的解析式,由對稱性求點B的坐標,根據圖象寫出函數(shù)?的值y隨x的增大而增大(即呈上升趨勢)的x的取值;②如圖2,作輔助線,構建對稱點F和直角角三角形AQE,根據S△ABQ=2S△ABP,得QE=2PD,證明△PAD∽△QAE,則,得AE=2AD,設AD=a,根據QE=2FD列方程可求得a的值,并計算P的坐標;(2)先令y=0求拋物線與x軸的兩個交點坐標,根據圖象中呈上升趨勢的部分,有兩部分:分別討論,并列不等式或不等式組可得h的取值.試題解析:(1)①把A(1,0)代入拋物線y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵點A在點B的左側,∴h>0,∴h=3,∴拋物線l的表達式為:y=(x﹣3)2﹣2,∴拋物線的對稱軸是:直線x=3,由對稱性得:B(5,0),由圖象可知:當1<x<3或x>5時,函數(shù)?的值y隨x的增大而增大;②如圖2,作PD⊥x軸于點D,延長PD交拋物線l于點F,作QE⊥x軸于E,則PD∥QE,由對稱性得:DF=PD,∵S△ABQ=2S△ABP,∴AB?QE=2×AB?PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,設AD=a,則OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵點F、Q在拋物線l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)當y=0時,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵點A在點B的左側,且h>0,∴A(h﹣2,0),B(h+2,0),如圖3,作拋物線的對稱軸交拋物線于點C,分兩種情況:①由圖象可知:圖象f在AC段時,函數(shù)f的值隨x的增大而增大,則,∴3≤h≤4,②由圖象可知:圖象f點B的右側時,函數(shù)f的值隨x的增大而增大,即:h+2≤2,h≤0,綜上所述,當3≤h≤4或h≤0時,函數(shù)f的值隨x的增大而增大.考點:待定系數(shù)法求二次函數(shù)的解析式;二次函數(shù)的增減性問題、三角形相似的性質和判定;一元二次方程;一元一次不等式組.19、(1)見解析;(2)AC=1.【解析】
(1)要證明DB為⊙O的切線,只要證明∠OBD=90即可.(2)根據已知及直角三角形的性質可以得到PD=2BD=2DA=2,再利用等角對等邊可以得到AC=AP,這樣求得AP的值就得出了AC的長.【詳解】(1)證明:連接OD;∵PA為⊙O切線,∴∠OAD=90°;在△OAD和△OBD中,,∴△OAD≌△OBD,∴∠OBD=∠OAD=90°,∴OB⊥BD∴DB為⊙O的切線(2)解:在Rt△OAP中;∵PB=OB=OA,∴OP=2OA,∴∠OPA=10°,∴∠POA=60°=2∠C,∴PD=2BD=2DA=2,∴∠OPA=∠C=10°,∴AC=AP=1.本題考查了切線的判定及性質,全等三全角形的判定等知識點的掌握情況.20、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).【解析】
(1)將的坐標代入拋物線中,求出待定系數(shù)的值,即可得出拋物線的解析式;
(2)根據的坐標,易求得直線的解析式.由于都是定值,則的面積不變,若四邊形面積最大,則的面積最大;過點作軸交于,則可得到當面積有最大值時,四邊形的面積最大值;(3)本題應分情況討論:①過作軸的平行線,與拋物線的交點符合點的要求,此時的縱坐標相同,代入拋物線的解析式中即可求出點坐標;②將平移,令點落在軸(即點)、點落在拋物線(即點)上;可根據平行四邊形的性質,得出點縱坐標(縱坐標的絕對值相等),代入拋物線的解析式中即可求得點坐標.【詳解】解:(1)把代入,可以求得∴(2)過點作軸分別交線段和軸于點,在中,令,得設直線的解析式為可求得直線的解析式為:∵S四邊形ABCD設當時,有最大值此時四邊形ABCD面積有最大值(3)如圖所示,如圖:①過點C作CP1∥x軸交拋物線于點P1,過點P1作P1E1∥BC交x軸于點E1,此時四邊形BP1CE1為平行四邊形,
∵C(0,-3)
∴設P1(x,-3)
∴x2-x-3=-3,解得x1=0,x2=3,
∴P1(3,-3);
②平移直線BC交x軸于點E,交x軸上方的拋物線于點P,當BC=PE時,四邊形BCEP為平行四邊形,
∵C(0,-3)
∴設P(x,3),
∴x2-x-3=3,
x2-3x-8=0
解得x=或x=,
此時存在點P2(,3)和P3(,3),
綜上所述存在3個點符合題意,坐標分別是P1(3,-3),P2(,3),P3(,3).此題考查了二次函數(shù)解析式的確定、圖形面積的求法、平行四邊形的判定和性質、二次函數(shù)的應用等知識,綜合性強,難度較大.21、;.【解析】
(1)由正方形的性質可求得B、C的坐標,代入拋物線解析式可求得b、c的值,則可求得拋物線的解析式;
(2)把拋物線解析式化為頂點式可求得D點坐標,再由S四邊形ABDC=S△ABC+S△BCD可求得四邊形ABDC的面積.【詳解】由已知得:,,把與坐標代入得:,解得:,,則解析式為;∵,∴拋物線頂點坐標為,則.二次函數(shù)的綜合應用.解題的關鍵是:在(1)中確定出B、C的坐標是解題的關鍵,在(2)中把四邊形轉化成兩個三角形.22、38+12【解析】
根據∠ABC=90°,AE=CE,EB=12,求出AC,根據Rt△ABC中,∠CAB=30°,BC=12,求出根據DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國方形雙眼超薄爐行業(yè)投資前景及策略咨詢研究報告
- 2009年中國醋酸行業(yè)市場研究與競爭力分析報告
- 2024至2030年中國室外大型金屬構件雷電防護裝置行業(yè)投資前景及策略咨詢研究報告
- 2024年中國鉭鈮氧化物市場調查研究報告
- 2024年中國草藤編壁紙市場調查研究報告
- 2024年中國粉體回收濾芯市場調查研究報告
- 2024年中國溶劑回收系統(tǒng)市場調查研究報告
- 2024年中國核苷酸二鈉市場調查研究報告
- 2024年中國彩色鋁環(huán)市場調查研究報告
- 2024年中國雙螺桿擠出機減速箱市場調查研究報告
- 學生思維能力的培養(yǎng)課件
- 中小企業(yè)精益生產成本管理課件
- 簡約對比百分比信息可視化演示圖表課件
- 紅色大氣簡約演講比賽通用 PPT模板
- 員工職業(yè)生涯發(fā)展規(guī)劃課件
- 中央空調水系統(tǒng)課件
- 河北省邯鄲市藥品零售藥店企業(yè)藥房名單目錄
- 二次預留預埋安裝技術交底(強、弱電部分)
- 蘇教版三年級上學期科學認識液體課件
- 激光拼焊板簡介課件
- 2023年5月-北京地區(qū)成人本科學士學位英語真題及答案
評論
0/150
提交評論