河北省石家莊趙縣聯(lián)考2024屆中考數(shù)學適應性模擬試題含解析_第1頁
河北省石家莊趙縣聯(lián)考2024屆中考數(shù)學適應性模擬試題含解析_第2頁
河北省石家莊趙縣聯(lián)考2024屆中考數(shù)學適應性模擬試題含解析_第3頁
河北省石家莊趙縣聯(lián)考2024屆中考數(shù)學適應性模擬試題含解析_第4頁
河北省石家莊趙縣聯(lián)考2024屆中考數(shù)學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省石家莊趙縣聯(lián)考2024屆中考數(shù)學適應性模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,一個鐵環(huán)上掛著6個分別編有號碼1,2,3,4,5,6的鐵片.如果把其中編號為2,4的鐵片取下來,再先后把它們穿回到鐵環(huán)上的仼意位置,則鐵環(huán)上的鐵片(無論沿鐵環(huán)如何滑動)不可能排成的情形是()A. B.C. D.2.如圖,矩形ABCD內接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.3.如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是A. B. C. D.4.據(jù)國家統(tǒng)計局2018年1月18日公布,2017年我國GDP總量為827122億元,首次登上80萬億元的門檻,數(shù)據(jù)827122億元用科學記數(shù)法表示為()A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×10145.對于一組統(tǒng)計數(shù)據(jù)1,1,6,5,1.下列說法錯誤的是()A.眾數(shù)是1 B.平均數(shù)是4 C.方差是1.6 D.中位數(shù)是66.完全相同的6個小矩形如圖所示放置,形成了一個長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m7.一個兩位數(shù),它的十位數(shù)字是3,個位數(shù)字是拋擲一枚質地均勻的骰子(六個面分別標有數(shù)字1﹣6)朝上一面的數(shù)字,任意拋擲這枚骰子一次,得到的兩位數(shù)是3的倍數(shù)的概率等于()A. B. C. D.8.如圖,小橋用黑白棋子組成的一組圖案,第1個圖案由1個黑子組成,第2個圖案由1個黑子和6個白子組成,第3個圖案由13個黑子和6個白子組成,按照這樣的規(guī)律排列下去,則第8個圖案中共有(

)和黑子.A.37 B.42 C.73 D.1219.二次函數(shù)y=﹣(x﹣1)2+5,當m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.10.如圖,已知點A(1,0),B(0,2),以AB為邊在第一象限內作正方形ABCD,直線CD與y軸交于點G,再以DG為邊在第一象限內作正方形DEFG,若反比例函數(shù)的圖像經(jīng)過點E,則k的值是()(A)33(B)34(C)35(D)36二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,網(wǎng)格中的四個格點組成菱形ABCD,則tan∠DBC的值為___________.12.因式分解:2m2﹣8n2=.13.二次根式中,x的取值范圍是.14.如圖,與是以點為位似中心的位似圖形,相似比為,,,若點的坐標是,則點的坐標是__________.15.一組數(shù)據(jù):1,2,a,4,5的平均數(shù)為3,則a=_____.16.一組數(shù)據(jù)10,10,9,8,x的平均數(shù)是9,則這列數(shù)據(jù)的極差是_____.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,∠ABC=90°,BD⊥AC,垂足為D,E為BC邊上一動點(不與B、C重合),AE、BD交于點F.(1)當AE平分∠BAC時,求證:∠BEF=∠BFE;(2)當E運動到BC中點時,若BE=2,BD=2.4,AC=5,求AB的長.18.(8分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.19.(8分)先化簡,再求值:,其中m=2.20.(8分)先化簡后求值:已知:x=﹣2,求的值.21.(8分)(1)如圖1,正方形ABCD中,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點G,求證:AE=BF;(2)如圖2,矩形ABCD中,AB=2,BC=3,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點M,探究AE與BF的數(shù)量關系,并證明你的結論;(3)在(2)的基礎上,若AB=m,BC=n,其他條件不變,請直接寫出AE與BF的數(shù)量關系;.22.(10分)(1)計算:|-1|+(2017-π)0-()-1-3tan30°+;(2)化簡:(+)÷,并在2,3,4,5這四個數(shù)中取一個合適的數(shù)作為a的值代入求值.23.(12分)先化簡:,再從、2、3中選擇一個合適的數(shù)作為a的值代入求值.24.如圖,AC=DC,BC=EC,∠ACD=∠BCE.求證:∠A=∠D.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

摘掉鐵片2,4后,鐵片1,1,5,6在鐵環(huán)上按逆時針排列,無論將鐵片2,4穿回哪里,鐵片1,1,5,6在鐵環(huán)上的順序不變,觀察四個選擇即可得出結論.【詳解】解:摘掉鐵片2,4后,鐵片1,1,5,6在鐵環(huán)上按逆時針排列,∵選項A,B,C中鐵片順序為1,1,5,6,選項D中鐵片順序為1,5,6,1.故選D.【點睛】本題考查了規(guī)律型:圖形的變化類,找準鐵片1,1,5,6在鐵環(huán)上的順序不變是解題的關鍵.2、A【解析】

連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結論.【詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【點睛】本題考查了圓周角定理與勾股定理,解題的關鍵是熟練的掌握圓周角定理與勾股定理的應用.3、C【解析】

如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.設DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.【詳解】如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.【點睛】本題考查正方形的性質、平行線分線段成比例定理、三角形中位線定理等知識,解題的關鍵是學會添加常用輔助線,構造平行線解決問題,學會利用參數(shù)解決問題,屬于中考常考題型.4、B【解析】

由科學記數(shù)法的定義可得答案.【詳解】解:827122億即82712200000000,用科學記數(shù)法表示為8.27122×1013,故選B.【點睛】科學記數(shù)法表示數(shù)的標準形式為(<10且n為整數(shù)).5、D【解析】

根據(jù)中位數(shù)、眾數(shù)、方差等的概念計算即可得解.【詳解】A、這組數(shù)據(jù)中1都出現(xiàn)了1次,出現(xiàn)的次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,此選項正確;B、由平均數(shù)公式求得這組數(shù)據(jù)的平均數(shù)為4,故此選項正確;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此選項正確;D、將這組數(shù)據(jù)按從大到校的順序排列,第1個數(shù)是1,故中位數(shù)為1,故此選項錯誤;故選D.考點:1.眾數(shù);2.平均數(shù);1.方差;4.中位數(shù).6、D【解析】

解:設小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.7、B【解析】

直接得出兩位數(shù)是3的倍數(shù)的個數(shù),再利用概率公式求出答案.【詳解】∵一枚質地均勻的骰子,其六個面上分別標有數(shù)字1,2,3,4,5,6,投擲一次,十位數(shù)為3,則兩位數(shù)是3的倍數(shù)的個數(shù)為2.∴得到的兩位數(shù)是3的倍數(shù)的概率為:=.故答案選:B.【點睛】本題考查了概率的知識點,解題的關鍵是根據(jù)題意找出兩位數(shù)是3的倍數(shù)的個數(shù)再運用概率公式解答即可.8、C【解析】解:第1、2圖案中黑子有1個,第3、4圖案中黑子有1+2×6=13個,第5、6圖案中黑子有1+2×6+4×6=37個,第7、8圖案中黑子有1+2×6+4×6+6×6=73個.故選C.點睛:本題考查了規(guī)律型:圖形的變化類:通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.9、D【解析】

由m≤x≤n和mn<0知m<0,n>0,據(jù)此得最小值為1m為負數(shù),最大值為1n為正數(shù).將最大值為1n分兩種情況,①頂點縱坐標取到最大值,結合圖象最小值只能由x=m時求出.②頂點縱坐標取不到最大值,結合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數(shù)y=﹣(x﹣1)1+5的大致圖象如下:.①當m≤0≤x≤n<1時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=n時y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當m≤0≤x≤1≤n時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=1時y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時y取最小值,x=1時y取最大值,

1m=-(n-1)1+5,n=,∴m=,

∵m<0,

∴此種情形不合題意,所以m+n=﹣1+=.10、D【解析】試題分析:過點E作EM⊥OA,垂足為M,∵A(1,0),B(0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB==,∵AB//CD,∴∠ABO=∠CBG,∵∠BCG=90°,∴△BCG∽△AOB,∴,∵BC=AB=,∴CG=2,∵CD=AD=AB=,∴DG=3,∴DE=DG=3,∴AE=4,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO,又∵∠EMA=90°,∴△EAM∽△ABO,∴,即,∴AM=8,EM=4,∴AM=9,∴E(9,4),∴k=4×9=36;故選D.考點:反比例函數(shù)綜合題.二、填空題(本大題共6個小題,每小題3分,共18分)11、3【解析】試題分析:如圖,連接AC與BD相交于點O,∵四邊形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案為3.考點:3.菱形的性質;3.解直角三角形;3.網(wǎng)格型.12、2(m+2n)(m﹣2n).【解析】試題分析:根據(jù)因式分解法的步驟,有公因式的首先提取公因式,可知首先提取系數(shù)的最大公約數(shù)2,進一步發(fā)現(xiàn)提公因式后,可以用平方差公式繼續(xù)分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考點:提公因式法與公式法的綜合運用.13、.【解析】根據(jù)二次根式被開方數(shù)必須是非負數(shù)的條件,要使在實數(shù)范圍內有意義,必須.14、(2,2)【解析】分析:首先解直角三角形得出A點坐標,再利用位似是特殊的相似,若兩個圖形與是以點為位似中心的位似圖形,相似比是k,上一點的坐標是則在中,它的對應點的坐標是或,進而求出即可.詳解:與是以點為位似中心的位似圖形,,,若點的坐標是,過點作交于點E.點的坐標為:與的相似比為,點的坐標為:即點的坐標為:故答案為:點睛:考查位似圖形的性質,熟練掌握位似圖形的性質是解題的關鍵.15、1【解析】依題意有:(1+2+a+4+5)÷5=1,解得a=1.故答案為1.16、1【解析】

先根據(jù)平均數(shù)求出x,再根據(jù)極差定義可得答案.【詳解】由題意知=9,解得:x=8,∴這列數(shù)據(jù)的極差是10-8=1,故答案為1.【點睛】本題主要考查平均數(shù)和極差,熟練掌握平均數(shù)的計算得出x的值是解題的關鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(1)2【解析】分析:(1)根據(jù)角平分線的定義可得∠1=∠1,再根據(jù)等角的余角相等求出∠BEF=∠AFD,然后根據(jù)對頂角相等可得∠BFE=∠AFD,等量代換即可得解;(1)根據(jù)中點定義求出BC,利用勾股定理列式求出AB即可.詳解:(1)如圖,∵AE平分∠BAC,∴∠1=∠1.∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.∵∠BFE=∠AFD(對頂角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.點睛:本題考查了直角三角形的性質,勾股定理的應用,等角的余角相等的性質,熟記各性質并準確識圖是解題的關鍵.18、(1)(2).【解析】

(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.19、,原式.【解析】

原式括號中兩項通分并利用同分母分式的減法法則計算,約分得到最簡結果,把m的值代入計算即可求出值.【詳解】原式,當m=2時,原式.【點睛】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.20、【解析】

先根據(jù)分式混合運算順序和運算法則化簡原式,再將x的值代入計算可得.【詳解】解:原式=1﹣?(÷)=1﹣??=1﹣=,當x=﹣2時,原式===.【點睛】本題主要考查分式的化簡求值,解題的關鍵是熟練掌握分式混合運算順序和運算法則.21、(1)證明見解析;(2)AE=23BF,(3)AE=m【解析】

(1)根據(jù)正方形的性質,可得∠ABC與∠C的關系,AB與BC的關系,根據(jù)兩直線垂直,可得∠AMB的度數(shù),根據(jù)直角三角形銳角的關系,可得∠ABM與∠BAM的關系,根據(jù)同角的余角相等,可得∠BAM與∠CBF的關系,根據(jù)ASA,可得△ABE≌△BCF,根據(jù)全等三角形的性質,可得答案;(2)根據(jù)矩形的性質得到∠ABC=∠C,由余角的性質得到∠BAM=∠CBF,根據(jù)相似三角形的性質即可得到結論;(3)結論:AE=mn【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,∠BAE=∠CBFAB=CB∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如圖2中,結論:AE=23理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=23(3)結論:AE=mn理由:∵四邊形ABC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論