版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省信陽市達權(quán)店高級中學2025屆高一上數(shù)學期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,函數(shù)是奇函數(shù),且當時,,則()A. B.6C. D.72.若均大于零,且,則的最小值為()A. B.C. D.3.如圖來自古希臘數(shù)學家希波克拉底所研究的幾何圖形.此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形ABC的斜邊BC,直角邊AB,AC.△ABC的三邊所圍成的區(qū)域記為I,黑色部分記為II,其余部分記為III.在整個圖形中隨機取一點,此點取自I,II,III的概率分別記為p1,p2,p3,則A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p34.已知函數(shù),若,,,則實數(shù)、、的大小關(guān)系為()A. B.C. D.5.已知角的終邊經(jīng)過點,則的值為A. B.C. D.6.如果全集,,,則A. B.C. D.7.已知全集,集合1,2,3,,,則A.1, B.C. D.3,8.設(shè),,,則的大小關(guān)系是()A B.C. D.9.函數(shù),則函數(shù)的零點個數(shù)為()A.2個 B.3個C.4個 D.5個10.已知,都為單位向量,且,夾角的余弦值是,則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知定義域為R的偶函數(shù)滿足,當時,,則方程在區(qū)間上所有的解的和為___________.12.已知函數(shù)的定義域為,當時,,若,則的解集為______13.函數(shù)的單調(diào)遞增區(qū)間為___________.14.已知,函數(shù),若函數(shù)有兩個零點,則實數(shù)k的取值范圍是________15.函數(shù)的圖象與軸相交于點,如圖是它的部分圖象,若函數(shù)圖象相鄰的兩條對稱軸之間的距離為,則_________.16.已知平面向量,,若,則______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)判斷的奇偶性,并加以證明;(2)求函數(shù)的值域18.英國數(shù)學家泰勒發(fā)現(xiàn)了如下公式:,其中,此公式有廣泛的用途,例如利用公式得到一些不等式:當時,,.(1)證明:當時,;(2)設(shè),若區(qū)間滿足當定義域為時,值域也為,則稱為的“和諧區(qū)間”.(i)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由;(ii)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由.19.計算(1);(2).20.(1)已知,求的最小值;(2)求函數(shù)的定義域21.(1)設(shè)函數(shù).若不等式對一切實數(shù)恒成立,求實數(shù)的取值范圍;(2)解關(guān)于的不等式.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】先求出,再求出即得解.【詳解】由已知,函數(shù)與函數(shù)互為反函數(shù),則由題設(shè),當時,,則因為為奇函數(shù),所以.故選:D2、D【解析】由題可得,利用基本不等式可求得.【詳解】均大于零,且,,當且僅當,即時等號成立,故的最小值為.故選:D.【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.3、A【解析】首先設(shè)出直角三角形三條邊的長度,根據(jù)其為直角三角形,從而得到三邊的關(guān)系,然后應(yīng)用相應(yīng)的面積公式求得各個區(qū)域的面積,根據(jù)其數(shù)值大小,確定其關(guān)系,再利用面積型幾何概型的概率公式確定出p1,p2,p3的關(guān)系,從而求得結(jié)果.【詳解】設(shè),則有,從而可以求得的面積為,黑色部分的面積為,其余部分的面積為,所以有,根據(jù)面積型幾何概型的概率公式,可以得到,故選A.點睛:該題考查的是面積型幾何概型的有關(guān)問題,題中需要解決的是概率的大小,根據(jù)面積型幾何概型的概率公式,將比較概率的大小問題轉(zhuǎn)化為比較區(qū)域的面積的大小,利用相關(guān)圖形的面積公式求得結(jié)果.4、D【解析】根據(jù)條件判斷函數(shù)是偶函數(shù),且當時是增函數(shù),結(jié)合函數(shù)單調(diào)性進行比較即可【詳解】函數(shù)為偶函數(shù),當時,為增函數(shù),,,,則(1),即,則,故選:5、C【解析】因為點在單位圓上,又在角的終邊上,所以;則;故選C.6、A【解析】根據(jù)題意,先確定的范圍,再求出即可.【詳解】,,故選:A.【點睛】本題考查集合的運算,屬于簡單題.7、C【解析】可求出集合B,然后進行交集的運算,即可求解,得到答案【詳解】由題意,可得集合,又由,所以故選C【點睛】本題主要考查了集合的交集運算,其中解答中正確求解集合B,熟記集合的交集運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、C【解析】詳解】,即,選.9、D【解析】函數(shù)h(x)=f(x)﹣log4x的零點個數(shù)?函數(shù)f(x)與函數(shù)y=log4x的圖象交點個數(shù).畫出函數(shù)f(x)與函數(shù)y=log4x的圖象(如上圖),其中=的圖像可以看出來,當x增加個單位,函數(shù)值變?yōu)樵瓉淼囊话?,即往右移個單位,函數(shù)值變?yōu)樵瓉淼囊话?;依次類推;根?jù)圖象可得函數(shù)f(x)與函數(shù)y=log4x的圖象交點為5個∴函數(shù)h(x)=f(x)﹣log4x的零點個數(shù)為5個.故選D10、D【解析】利用,結(jié)合數(shù)量積的定義可求得的平方的值,再開方即可【詳解】依題意,,故選D【點睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運算,屬基礎(chǔ)題.向量數(shù)量積的運算主要掌握兩點:一是數(shù)量積的基本公式;二是向量的平方等于向量模的平方.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)給定條件,分析函數(shù),函數(shù)的性質(zhì),再在同一坐標系內(nèi)作出兩個函數(shù)圖象,結(jié)合圖象計算作答.【詳解】當時,,則函數(shù)在上單調(diào)遞減,函數(shù)值從減到0,而是R上的偶函數(shù),則函數(shù)在上單調(diào)遞增,函數(shù)值從0增到,因,有,則函數(shù)的周期是2,且有,即圖象關(guān)于直線對稱,令,則函數(shù)在上遞增,在上遞減,值域為,且圖象關(guān)于直線對稱,在同一坐標系內(nèi)作出函數(shù)和的圖象,如圖,觀察圖象得,函數(shù)和在上的圖象有8個交點,且兩兩關(guān)于直線對稱,所以方程在區(qū)間上所有解的和為.故答案為:【點睛】方法點睛:函數(shù)零點個數(shù)判斷方法:(1)直接法:直接求出f(x)=0的解;(2)圖象法:作出函數(shù)f(x)的圖象,觀察與x軸公共點個數(shù)或者將函數(shù)變形為易于作圖的兩個函數(shù),作出這兩個函數(shù)的圖象,觀察它們的公共點個數(shù).12、##【解析】構(gòu)造,可得在上單調(diào)遞減.由,轉(zhuǎn)化為,利用單調(diào)性可得答案【詳解】由,得,令,則,又,所以在上單調(diào)遞減由,得,因為,所以,所以,得故答案為:.13、【解析】根據(jù)復合函數(shù)“同增異減”的原則即可求得答案.【詳解】由,設(shè),對稱軸為:,根據(jù)“同增異減”的原則,函數(shù)的單調(diào)遞增區(qū)間為:.故答案為:.14、【解析】由題意函數(shù)有兩個零點可得,得,令與,作出函數(shù)與的圖象如圖所示:由圖可知,函數(shù)有且只有兩個零點,則實數(shù)的取值范圍是.故答案為:.【點睛】本題考查分段函數(shù)的應(yīng)用,函數(shù)零點的判斷等知識,解題時要靈活應(yīng)用數(shù)形結(jié)合思想15、【解析】根據(jù)圖象可得,由題意得出,即可求出,再代入即可求出,進而得出所求.【詳解】由函數(shù)圖象可得,相鄰的兩條對稱軸之間的距離為,,則,,,又,即,,或,根據(jù)“五點法”畫圖可判斷,,.故答案為:.16、【解析】求出,根據(jù),即,進行數(shù)量積的坐標運算,列出方程,即可求解【詳解】由題意知,平面向量,,則;因為,所以,解得故答案為【點睛】本題主要考查了向量的坐標運算,以及向量的數(shù)量積的應(yīng)用,其中解答中根據(jù)平面向量垂直的條件,得到關(guān)于的方程是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)是奇函數(shù);證明見解析(2)【解析】(1)首先確定定義域,根據(jù)奇偶性定義可得結(jié)論;(2)令,可求得的范圍,進而可得的值域.【小問1詳解】由得:,定義域為,關(guān)于原點對稱;,,為奇函數(shù);【小問2詳解】令,且,,或,或,的值域為.18、(1)證明見解析(2)(i)不存在“和諧區(qū)間”,理由見解析(ii)存在,有唯一的“和諧區(qū)間”【解析】(1)利用來證得結(jié)論成立.(2)(i)通過證明方程只有一個實根來判斷出此時不存在“和諧區(qū)間”.(ii)對的取值進行分類討論,結(jié)合的單調(diào)性以及(1)的結(jié)論求得唯一的“和諧區(qū)間”.【小問1詳解】由已知當時,,得,所以當時,.【小問2詳解】(i)時,假設(shè)存在,則由知,注意到,故,所以在單調(diào)遞增,于是,即是方程的兩個不等實根,易知不是方程的根,由已知,當時,,令,則有時,,即,故方程只有一個實根0,故不存在“和諧區(qū)間”.(ii)時,假設(shè)存在,則由知若,則由,知,與值域是矛盾,故不存在“和諧區(qū)間”,同理,時,也不存在,下面討論,若,則,故最小值為,于是,所以,所以最大值為2,故,此時的定義域為,值域為,符合題意.若,當時,同理可得,舍去,當時,在上單調(diào)遞減,所以,于是,若即,則,故,與矛盾;若,同理,矛盾,所以,即,由(1)知當時,,因為,所以,從而,,從而,矛盾,綜上所述,有唯一的“和諧區(qū)間”.【點睛】對于“新定義”的題目,關(guān)鍵是要運用新定義的知識以及原有的數(shù)學知識來進行求解.本題有兩個“新定義”,一個是泰勒發(fā)現(xiàn)的公式,另一個是“和諧區(qū)間”.泰勒發(fā)現(xiàn)的公式可以直接用于證明,“和諧區(qū)間”可轉(zhuǎn)化為函數(shù)的單調(diào)性來求解.19、(1)2(2)【解析】(1)根據(jù)對數(shù)計算公式,即可求得答案;(2)將化簡為,即可求得答案.【小問1詳解】【小問2詳解】20、(1)3;(2)或【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科技學院《環(huán)境材料》2023-2024學年第一學期期末試卷
- 廣東金融學院《設(shè)計色彩》2023-2024學年第一學期期末試卷
- 廣東建設(shè)職業(yè)技術(shù)學院《壓焊方法與設(shè)備》2023-2024學年第一學期期末試卷
- 廣東機電職業(yè)技術(shù)學院《測井數(shù)據(jù)處理與解釋》2023-2024學年第一學期期末試卷
- 廣東工業(yè)大學《教育與心理統(tǒng)計》2023-2024學年第一學期期末試卷
- 廣東工貿(mào)職業(yè)技術(shù)學院《國際商務(wù)函電》2023-2024學年第一學期期末試卷
- 廣東東軟學院《新聞理論》2023-2024學年第一學期期末試卷
- 廣東創(chuàng)新科技職業(yè)學院《水土保持原理與技術(shù)》2023-2024學年第一學期期末試卷
- 《光合作用原初反應(yīng)》課件
- 廣東白云學院《數(shù)字信號處理及實踐》2023-2024學年第一學期期末試卷
- 中班美術(shù)活動美麗的蝴蝶教案【含教學反思】
- 北師大版九年級數(shù)學上冊教學教學工作總結(jié)
- 光儲電站儲能系統(tǒng)調(diào)試方案
- (完整)小學語文考試專用作文方格紙
- 管理供應(yīng)商 供應(yīng)商績效評估
- 煙花爆竹工程設(shè)計安全規(guī)范
- 1000MW機組鍋爐過渡段T23水冷壁管檢修導則(征求意見稿)
- 夾層鋼結(jié)構(gòu)施工方案鋼結(jié)構(gòu)夾層施工方案
- 人教版九年級數(shù)學上冊期末復習課件全套
- YS/T 752-2011復合氧化鋯粉體
- GB/T 28708-2012管道工程用無縫及焊接鋼管尺寸選用規(guī)定
評論
0/150
提交評論