2021年高考全國乙卷數(shù)學(xué)(理)高考真題變式題1-5題-(學(xué)生版+解析)_第1頁
2021年高考全國乙卷數(shù)學(xué)(理)高考真題變式題1-5題-(學(xué)生版+解析)_第2頁
2021年高考全國乙卷數(shù)學(xué)(理)高考真題變式題1-5題-(學(xué)生版+解析)_第3頁
2021年高考全國乙卷數(shù)學(xué)(理)高考真題變式題1-5題-(學(xué)生版+解析)_第4頁
2021年高考全國乙卷數(shù)學(xué)(理)高考真題變式題1-5題-(學(xué)生版+解析)_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021年高考全國乙卷數(shù)學(xué)(理)高考真題變式題1-5題原題11.設(shè),則(

)A. B. C. D.變式題1基礎(chǔ)2.若z-3+5i=8-2i,則等于(

)A.8-7i B.5-3i C.11-7i D.8+7i變式題2基礎(chǔ)3.復(fù)數(shù)的共軛復(fù)數(shù)是(

)A. B. C. D.變式題3鞏固4.若(,是虛數(shù)單位),則等于(

)A. B. C. D.變式題4鞏固5.已知復(fù)數(shù),則(

)A.-4 B.-2 C.2i D.0變式題5鞏固6.復(fù)數(shù)滿足,則(

)A. B. C. D.變式題6提升7.若,則(

)A. B. C. D.原題28.已知集合,,則(

)A. B. C. D.變式題1基礎(chǔ)9.設(shè)集合,則()A. B. C. D.變式題2基礎(chǔ)10.已知集合,,則(

)A. B. C. D.變式題3鞏固11.已知集合,,則(

)A. B. C. D.P∩Q=變式題4鞏固12.設(shè)集合,,則(

)A. B. C. D.變式題5鞏固13.已知集合,,則(

)A. B. C. D.變式題6提升14.設(shè)集合,,則(

)A. B. C. D.變式題7提升15.集合,,若,則實(shí)數(shù)a取值范圍()A. B.或C.或 D.原題316.已知命題﹔命題﹐,則下列命題中為真命題的是(

)A. B. C. D.變式題1基礎(chǔ)17.函數(shù)的最大值是3,則它的最小值是(

)A.0 B.1 C. D.與有關(guān)變式題2基礎(chǔ)18.下列命題中是存在量詞命題且為假命題的是()A., B.所有的正方形都是矩形C., D.,使變式題3鞏固19.下列四個命題中,正確的是A.若,則B.若,則C.若,則D.若,則變式題4鞏固20.若命題:,,命題:,,則下列命題中是真命題的是(

)A. B.C. D.變式題5鞏固21.已知命題,;命題當(dāng)時,函數(shù)在上存在最小值.則下列命題中的真命題是(

)A. B. C. D.變式題6提升22.命題:若,則;命題:函數(shù)有且僅有一個零點(diǎn),則下列為真命題的是(

)A. B. C. D.原題423.設(shè)函數(shù),則下列函數(shù)中為奇函數(shù)的是(

)A. B. C. D.變式題1基礎(chǔ)24.下列函數(shù)中,是偶函數(shù)的是(

)A. B. C. D.變式題2基礎(chǔ)25.下列函數(shù)中,是奇函數(shù)的是(

)A. B. C. D.變式題3鞏固26.設(shè)函數(shù)在內(nèi)有定義,下列函數(shù)必為奇函數(shù)的是(

)A. B. C. D.變式題4鞏固27.若定義在上的函數(shù)不是偶函數(shù),則下列命題正確的是(

)A.B.C.D.變式題5鞏固28.設(shè)函數(shù),則下列函數(shù)中為偶函數(shù)的是(

)A. B. C. D.變式題6提升29.已知非常數(shù)函數(shù)滿足,則下列函數(shù)中,不是奇函數(shù)的為(

)A. B. C. D.變式題6提升30.在正方體中,P為的中點(diǎn),則直線與所成的角為(

)A. B. C. D.變式題1基礎(chǔ)31.在正方體中,異面直線與所成的角為(

)A. B. C. D.變式題1基礎(chǔ)32.正方體中,分別是中點(diǎn),則直線與所成角的余弦值是(

)A. B. C. D.變式題3鞏固33.已知正四棱錐的側(cè)棱長與底面邊長都相等,是的中點(diǎn),則所成的角的余弦值為A. B. C. D.變式題4鞏固34.已知直三棱柱,若,,是棱中點(diǎn),則直線與直線所成角的余弦值為(

)A. B.C. D.變式題5鞏固35.在長方體中,,則異面直線與所成角的余弦值為(

)A. B. C. D.變式題6提升36.已知正四面體ABCD中,E是AB的中點(diǎn),則異面直線CE與BD所成角的余弦值為A. B. C. D.變式題7提升37.在底面為正方形的四棱錐中,底面,,則異面直線與所成的角為(

)A. B. C. D.2021年高考全國乙卷數(shù)學(xué)(理)高考真題變式題1-5題原題11.設(shè),則(

)A. B. C. D.變式題1基礎(chǔ)2.若z-3+5i=8-2i,則等于(

)A.8-7i B.5-3i C.11-7i D.8+7i變式題2基礎(chǔ)3.復(fù)數(shù)的共軛復(fù)數(shù)是(

)A. B. C. D.變式題3鞏固4.若(,是虛數(shù)單位),則等于(

)A. B. C. D.變式題4鞏固5.已知復(fù)數(shù),則(

)A.-4 B.-2 C.2i D.0變式題5鞏固6.復(fù)數(shù)滿足,則(

)A. B. C. D.變式題6提升7.若,則(

)A. B. C. D.原題28.已知集合,,則(

)A. B. C. D.變式題1基礎(chǔ)9.設(shè)集合,則()A. B. C. D.變式題2基礎(chǔ)10.已知集合,,則(

)A. B. C. D.變式題3鞏固11.已知集合,,則(

)A. B. C. D.P∩Q=變式題4鞏固12.設(shè)集合,,則(

)A. B. C. D.變式題5鞏固13.已知集合,,則(

)A. B. C. D.變式題6提升14.設(shè)集合,,則(

)A. B. C. D.變式題7提升15.集合,,若,則實(shí)數(shù)a取值范圍()A. B.或C.或 D.原題316.已知命題﹔命題﹐,則下列命題中為真命題的是(

)A. B. C. D.變式題1基礎(chǔ)17.函數(shù)的最大值是3,則它的最小值是(

)A.0 B.1 C. D.與有關(guān)變式題2基礎(chǔ)18.下列命題中是存在量詞命題且為假命題的是()A., B.所有的正方形都是矩形C., D.,使變式題3鞏固19.下列四個命題中,正確的是A.若,則B.若,則C.若,則D.若,則變式題4鞏固20.若命題:,,命題:,,則下列命題中是真命題的是(

)A. B.C. D.變式題5鞏固21.已知命題,;命題當(dāng)時,函數(shù)在上存在最小值.則下列命題中的真命題是(

)A. B. C. D.變式題6提升22.命題:若,則;命題:函數(shù)有且僅有一個零點(diǎn),則下列為真命題的是(

)A. B. C. D.原題423.設(shè)函數(shù),則下列函數(shù)中為奇函數(shù)的是(

)A. B. C. D.變式題1基礎(chǔ)24.下列函數(shù)中,是偶函數(shù)的是(

)A. B. C. D.變式題2基礎(chǔ)25.下列函數(shù)中,是奇函數(shù)的是(

)A. B. C. D.變式題3鞏固26.設(shè)函數(shù)在內(nèi)有定義,下列函數(shù)必為奇函數(shù)的是(

)A. B. C. D.變式題4鞏固27.若定義在上的函數(shù)不是偶函數(shù),則下列命題正確的是(

)A.B.C.D.變式題5鞏固28.設(shè)函數(shù),則下列函數(shù)中為偶函數(shù)的是(

)A. B. C. D.變式題6提升29.已知非常數(shù)函數(shù)滿足,則下列函數(shù)中,不是奇函數(shù)的為(

)A. B. C. D.變式題6提升30.在正方體中,P為的中點(diǎn),則直線與所成的角為(

)A. B. C. D.變式題1基礎(chǔ)31.在正方體中,異面直線與所成的角為(

)A. B. C. D.變式題1基礎(chǔ)32.正方體中,分別是中點(diǎn),則直線與所成角的余弦值是(

)A. B. C. D.變式題3鞏固33.已知正四棱錐的側(cè)棱長與底面邊長都相等,是的中點(diǎn),則所成的角的余弦值為A. B. C. D.變式題4鞏固34.已知直三棱柱,若,,是棱中點(diǎn),則直線與直線所成角的余弦值為(

)A. B.C. D.變式題5鞏固35.在長方體中,,則異面直線與所成角的余弦值為(

)A. B. C. D.變式題6提升36.已知正四面體ABCD中,E是AB的中點(diǎn),則異面直線CE與BD所成角的余弦值為A. B. C. D.變式題7提升37.在底面為正方形的四棱錐中,底面,,則異面直線與所成的角為(

)A. B. C. D.參考答案:1.C【分析】設(shè),利用共軛復(fù)數(shù)的定義以及復(fù)數(shù)的加減法可得出關(guān)于、的等式,解出這兩個未知數(shù)的值,即可得出復(fù)數(shù).【詳解】設(shè),則,則,所以,,解得,因此,.故選:C.2.C【分析】根據(jù)復(fù)數(shù)的減法運(yùn)算可解得結(jié)果.【詳解】.故選:C.3.B【分析】根據(jù)共軛復(fù)數(shù)的定義判斷.【詳解】復(fù)數(shù)的共軛復(fù)數(shù)是.故選:B.4.B【分析】根據(jù)復(fù)數(shù)相等的條件,求得的值,即可求解.【詳解】因為,即,所以,所以.故選:B.5.A【分析】由已知的復(fù)數(shù)可求出其共軛復(fù)數(shù),根據(jù)復(fù)數(shù)運(yùn)算法則進(jìn)行運(yùn)算即可.【詳解】因為,所以,所以,故選:A6.B【分析】設(shè),則,根據(jù)復(fù)數(shù)的乘法運(yùn)算及復(fù)數(shù)相等的條件即可得出答案.【詳解】設(shè),則,則,因為,即,所以,解得,所以,.故選:B.7.D【分析】本題首先根據(jù)共軛復(fù)數(shù)的性質(zhì)得出,然后通過復(fù)數(shù)的運(yùn)算法則得出,最后通過復(fù)數(shù)的模的求法即可得出結(jié)果.【詳解】因為,所以,則,,故選:D.8.C【分析】分析可得,由此可得出結(jié)論.【詳解】任取,則,其中,所以,,故,因此,.故選:C.9.C【分析】由題得,A.集合和集合之間不能用“∈”連接,所以選項A錯誤;

B.,所以選項B錯誤;

C.,所以選項C正確;

D.集合和集合之間不能用“∈”連接,所以錯誤.【詳解】由題得,A.錯誤,集合和集合之間不能用“∈”連接,所以選項A錯誤;

B.,所以選項B錯誤;

C.,所以選項C正確;

D.集合和集合之間不能用“∈”連接,所以錯誤,應(yīng)該為.故選:C10.B【分析】根據(jù)集合包含關(guān)系的定義可得出結(jié)論.【詳解】因為,,故.故選:B.11.D【分析】化簡得到集合,,結(jié)合為奇數(shù),為偶數(shù),即可求解.【詳解】由和,可得集合,,因為為奇數(shù),為偶數(shù),所以.故選:D.12.A【分析】根據(jù)集合和中的元素的特征,結(jié)合集合間的關(guān)系,即可得解.【詳解】對集合,其集合中的元素為的整數(shù)倍,對集合,其集合中的元素為的整數(shù)倍,的整數(shù)倍必為的整數(shù)倍,反之則不成立,即中的元素必為中的元素,而中的元素不一定為中的元素,故為的真子集,故選:A13.C【分析】根據(jù)子集定義,即可判斷.【詳解】由子集定義,可知.故選:C14.C【分析】分別求解兩個集合中的不等式,結(jié)合選項分析即可.【詳解】由題意,,,于是.故選:C15.C【分析】根據(jù),可得或,從而可得答案.【詳解】解:因為,所以或,所以或.故選:C.16.A【分析】由正弦函數(shù)的有界性確定命題的真假性,由指數(shù)函數(shù)的知識確定命題的真假性,由此確定正確選項.【詳解】由于,所以命題為真命題;由于在上為增函數(shù),,所以,所以命題為真命題;所以為真命題,、、為假命題.故選:A.17.C【分析】設(shè),轉(zhuǎn)化為在上的最大值是3,分的符號進(jìn)行分類討論,先求出的值,再求其最小值.【詳解】設(shè),當(dāng)時,不滿足條件.當(dāng)時,當(dāng)時,有最大值3,即,則,則當(dāng)時,有最小值-1,當(dāng)時,當(dāng)時,有最大值3,即,則,則當(dāng)時,有最小值-1,綜上的最小值是-1.故選:C.【點(diǎn)睛】本題考查正弦函數(shù)的最值,還可以由函數(shù)的最大值是3,得到,函數(shù)的最小值為,從而得到函數(shù)的最小值,屬于基礎(chǔ)題.18.C【分析】根據(jù)各選項命題的描述判斷是否為存在量詞命題及其真假即可.【詳解】A:命題為存在量詞命題,當(dāng)時,,故為真命題;B:命題為全稱量詞命題,不是存在量詞命題;C:命題為存在量詞命題,,,故為假命題;D:命題為存在量詞命題,當(dāng)時,,故為真命題.故選:C19.C【詳解】試題分析:因為,當(dāng),故B、D均錯誤.若,則,故A錯誤,C正確,故選C.考點(diǎn):1、全稱量詞與存在量詞;2、三角函數(shù)的有界性及二倍角的正弦公式.20.D【分析】根據(jù)二次函數(shù)性質(zhì)判斷命題p的真假,根據(jù)絕對值的定義判斷q的真假,從而可逐項判斷真假.【詳解】對于關(guān)于x的二次方程,∵,故恒成立,∴不存在,使得,∴命題p是假命題,命題為真命題;當(dāng)x<0時,,∴命題q是真命題,命題是假命題;故為假命題,為假命題,為假命題,為真命題.故選:D.21.A【分析】判斷出命題的真假,利用二次函數(shù)的基本性質(zhì)可判斷命題的真假,再利用復(fù)合命題的真假可得出結(jié)論.【詳解】因為當(dāng)時,,所以命題為真命題;,因為,所以,則,所以當(dāng)時,取得最小值,故命題為真命題.所以為真命題,,,均為假命題.故選:A.22.A【分析】根據(jù)正弦函數(shù)可知命題為假;令,可知是其切線方程,從而知命題為真,即可判斷結(jié)果.【詳解】若,或,故命題為假;令,則當(dāng)時,,所以在處的切線方程為所以只有一個實(shí)根,故函數(shù)有且僅有一個零點(diǎn),命題為真;所以為真命題,,,均為假命題.故選:A23.B【分析】分別求出選項的函數(shù)解析式,再利用奇函數(shù)的定義即可.【詳解】由題意可得,對于A,不是奇函數(shù);對于B,是奇函數(shù);對于C,,定義域不關(guān)于原點(diǎn)對稱,不是奇函數(shù);對于D,,定義域不關(guān)于原點(diǎn)對稱,不是奇函數(shù).故選:B【點(diǎn)睛】本題主要考查奇函數(shù)定義,考查學(xué)生對概念的理解,是一道容易題.24.D【分析】根據(jù)函數(shù)奇偶性的定義判斷即可.【詳解】的定義域為,故函數(shù)為奇函數(shù);的定義域為,故函數(shù)為非奇非偶函數(shù);的定義域為,且,故函數(shù)為奇函數(shù);的定義域,且,故函數(shù)為偶函數(shù).故選:D25.D【分析】利用函數(shù)的奇偶性定義判斷.【詳解】A.定義域為R,關(guān)于原點(diǎn)對稱,又,所以函數(shù)是偶函數(shù),故錯誤;B.定義域為,不關(guān)于原點(diǎn)對稱,所以函數(shù)即不是奇函數(shù)也不是偶函數(shù),故錯誤;

C.定義域為R,關(guān)于原點(diǎn)對稱,又,所以函數(shù)是偶函數(shù),故錯誤;D.定義域為,關(guān)于原點(diǎn)對稱,又,所以函數(shù)是奇函數(shù),故正確,故選:D26.B【分析】根據(jù)奇偶性的定義依次判斷即可.【詳解】對A,中,與不一定相等,故不一定為奇函數(shù),故A錯誤;對B,中,,所以函數(shù)為奇函數(shù),故B正確;對C,中,與不一定相等,故不一定為奇函數(shù),故C錯誤;對D,為偶函數(shù),故D錯誤.故選:B.27.C【分析】由偶函數(shù)的定義判斷.【詳解】A錯,,函數(shù)為奇函數(shù),如,;B錯,若,它不是偶函數(shù),不存在,使得;C正確,如果不存在,使得,說明對任意,,函數(shù)為偶函數(shù),不可能,因此C正確;D錯,如,它不是偶函數(shù),但存在使得.故選:C.28.B【分析】化簡各選項中的函數(shù)解析式,利用函數(shù)奇偶性的定義以及特殊值法可得出結(jié)論.【詳解】由題意可得,對于A,,設(shè),對任意的,,函數(shù)的定義域為,,,,函數(shù)不是偶函數(shù);對于B,,設(shè),對任意的,,函數(shù)的定義域為,,函數(shù)為偶函數(shù);對于C,,設(shè),對任意的,,函數(shù)的定義域為,,,,函數(shù)不是偶函數(shù);對于D,,設(shè),對任意的,,,,則,函數(shù)不是偶函數(shù).故選:B.29.D【分析】根據(jù)奇函數(shù)的定義判斷.【詳解】因為,所以,則,是奇函數(shù),同理也是奇函數(shù),,則,是奇函數(shù),,為偶函數(shù),故選:D.30.D【分析】平移直線至,將直線與所成的角轉(zhuǎn)化為與所成的角,解三角形即可.【詳解】如圖,連接,因為∥,所以或其補(bǔ)角為直線與所成的角,因為平面,所以,又,,所以平面,所以,設(shè)正方體棱長為2,則,,所以.故選:D31.C【分析】連接,把異面直線與所成的角轉(zhuǎn)化為直線與所成的角,在等邊中,得到,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成的角即為直線與所成的角,在等邊中,可得,即異面直線與所成的角為.故選:C.32.A【分析】正方體AC1中,連接BD,B1D1,AB1,證明EF//B1D1,判斷的形狀即可作答.【詳解】正方體中,連接BD,B1D1,AB1,如圖:因分別是中點(diǎn),則,而正方體AC1的對角面BDD1B1是矩形,于是有,則直線與所成角是或其補(bǔ)角,又,即是正三角形,,直線與所成角的余弦值是.故選:A33.C【詳解】試題分析:設(shè)的交點(diǎn)為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長為,則,所以,故C為正確答案.考點(diǎn):異面直線所成的角.34.C【分析】為中點(diǎn),連接易得為平行四邊形,則,進(jìn)而確定直線與直線所成角的平面角,應(yīng)用余弦定理求其余弦值.【詳解】若為中點(diǎn),連接,又是棱中點(diǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論