2020年新高考全國2卷數(shù)學高考真題變式題6-10題-(學生版+解析)_第1頁
2020年新高考全國2卷數(shù)學高考真題變式題6-10題-(學生版+解析)_第2頁
2020年新高考全國2卷數(shù)學高考真題變式題6-10題-(學生版+解析)_第3頁
2020年新高考全國2卷數(shù)學高考真題變式題6-10題-(學生版+解析)_第4頁
2020年新高考全國2卷數(shù)學高考真題變式題6-10題-(學生版+解析)_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2020年新高考全國2卷數(shù)學高考真題變式題6-10題原題61.要安排3名學生到2個鄉(xiāng)村做志愿者,每名學生只能選擇去一個村,每個村里至少有一名志愿者,則不同的安排方法共有(

)A.2種 B.3種 C.6種 D.8種變式題1基礎2.將6名黨員干部分配到4個貧困村駐村扶貧,每個貧困村至少分配1名黨員干部,則不同的分配方案共有(

)A.2640種 B.4800種 C.1560種 D.7200種變式題2基礎3.將甲、乙、丙、丁、戊5名護士派往、、、四家醫(yī)院,每所醫(yī)院至少派1名護士,則不同的派法總數(shù)有(

)A.480種 B.360種 C.240種 D.120種變式題3鞏固4.從5名同學中選若干名分別到圖書館、食堂做志愿者,若每個地方至少去2名,則不同的安排方法共有(

)A.20種 B.50種 C.80種 D.100種變式題4鞏固5.在6張獎券中有一等獎獎券1張、二等獎獎券2張、三等獎獎券3張.現(xiàn)有3個人抽獎,每人2張,則不同的獲獎情況有(

)A.15 B.18 C.24 D.90變式題5鞏固6.將、、、、、六名工作人員分配到兩個不同的地點進行扶貧驗收,要求、必須在同一組,且每組至少兩人,則不同的分配方案有(

)A.種 B.種 C.種 D.種變式題6提升7.某交通崗共有3人,從周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有(

)種.A.5040 B.1260 C.210 D.630原題78.已知函數(shù)在上單調遞增,則的取值范圍是(

)A. B. C. D.變式題1基礎9.已知函數(shù)在上是x的減函數(shù),則a的取值范圍是(

)A. B. C. D.變式題2基礎10.若函數(shù)在區(qū)間上單調遞增,則實數(shù)a的取值范圍是(

)A. B. C. D.變式題3鞏固11.函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是()A.或 B.C. D.變式題4鞏固12.已知函數(shù)在區(qū)間上單調遞減,則實數(shù)的取值范圍是(

)A. B. C. D.變式題5鞏固13.若函數(shù)的單調遞增區(qū)間為(0,2a],則(

)A. B. C.2 D.4變式題6提升14.已知函數(shù),記,若在區(qū)間上是增函數(shù),則實數(shù)的取值范圍是(

)A. B. C. D.原題815.若定義在的奇函數(shù)f(x)在單調遞減,且f(2)=0,則滿足的x的取值范圍是(

)A. B.C. D.變式題1基礎16.函數(shù)是定義在R上的偶函數(shù),在上是減函數(shù)且,則使的x的取值范圍(

).A. B. C. D.變式題2基礎17.若函數(shù)是定義在R上的偶函數(shù),在上是減函數(shù),且,則使得的x的取值范圍是(

)A. B. C. D.變式題3鞏固18.已知函數(shù),則不等式的解集為(

).A. B.C. D.變式題4鞏固19.已知函數(shù),則關于x的不等式的解集為(

)A. B. C. D.變式題5鞏固20.設函數(shù)在定義域上滿足,若在上是減函數(shù),且,則滿足的的取值范圍為A. B.C. D.變式題6提升21.定義在上的函數(shù)在上單調遞減,且是偶函數(shù),則使成立的的取值范圍是(

)A. B. C. D.原題922.我國新冠肺炎疫情進入常態(tài)化,各地有序推進復工復產,下面是某地連續(xù)11天復工復產指數(shù)折線圖,下列說法正確的是A.這11天復工指數(shù)和復產指數(shù)均逐日增加;B.這11天期間,復產指數(shù)增量大于復工指數(shù)的增量;C.第3天至第11天復工復產指數(shù)均超過80%;D.第9天至第11天復產指數(shù)增量大于復工指數(shù)的增量;變式題1基礎23.如圖是某公司2018年1月至12月空調銷售任務及完成情況的統(tǒng)計圖,如10月份銷售任務是400臺,完成率為90%,下列敘述正確的是A.2018年3月的銷售任務是400臺B.2018年月銷售任務的平均值不超過600臺C.2018年總銷售量為4870臺D.2018年月銷售量最大的是6月份變式題2基礎24.如圖所示的折線圖為某小區(qū)小型超市今年1月份到5月份的營業(yè)額和支出數(shù)據(jù)(利潤=營業(yè)額-支出),根據(jù)折線圖,下列說法正確的是(

)A.該超市這五個月中的營業(yè)額一直在增長;B.該超市這五個月的利潤一直在增長;C.該超市這五個月中五月份的利潤最高;D.該超市這五個月中的營業(yè)額和支出呈正相關.變式題3鞏固25.某品牌手機2019年1月到12月期間的月銷量(單位:百萬臺)數(shù)據(jù)的折線圖如下,根據(jù)該折線圖,下列結論正確的是()A.上半年的月銷售量逐月增加B.與前一個月相比,銷售量增加最多的是11月C.全年的平均月銷售量為2.9百萬臺D.四個季度中,第三個季度的月銷售量波動最小變式題4鞏固26.某企業(yè)2019年12個月的收入與支出數(shù)據(jù)的折線圖如下:已知:利潤=收入-支出,根據(jù)該折線圖,下列說法正確的是(

)A.該企業(yè)2019年1月至6月的總利潤低于2019年7月至12月的總利潤B.該企業(yè)2019年第一季度的利潤約是50萬元C.該企業(yè)2019年4月至7月的月利潤持續(xù)增長D.該企業(yè)2019年11月份的月利潤最大變式題5鞏固27.劉女士的網店經營堅果類食品,2019年各月份的收入、支出(單位:百元)情況的統(tǒng)計如圖所示,下列說法中正確的是()A.4至5月份的收入的變化率與11至12月份的收入的變化率相同B.支出最高值與支出最低值的比是C.第三季度平均收入為5000元D.利潤最高的月份是3月份和10月份變式題6提升28.某同學在微信上查詢到近十年全國高考報名人數(shù)、錄取人數(shù)和山東夏季高考報名人數(shù)的折線圖,其中年的錄取人數(shù)被遮擋了.他又查詢到近十年全國高考錄取率的散點圖,結合圖表中的信息判定下列說法正確的是(

)A.全國高考報名人數(shù)逐年增加B.年全國高考錄取率最高C.年高考錄取人數(shù)約萬D.年山東高考報名人數(shù)在全國的占比最小原題1029.已知曲線.(

)A.若m>n>0,則C是橢圓,其焦點在y軸上B.若m=n>0,則C是圓,其半徑為C.若mn<0,則C是雙曲線,其漸近線方程為D.若m=0,n>0,則C是兩條直線變式題1基礎30.(多選題)方程表示的曲線不可能為(

)A.拋物線 B.橢圓 C.雙曲線 D.圓變式題2基礎31.方程表示的曲線可能是(

)A.橢圓 B.拋物線 C.雙曲線 D.直線變式題3鞏固32.已知曲線C的方程為(且),則下列結論正確的是(

)A.當時,曲線C是焦距為4的雙曲線B.當時,曲線C是離心率為的橢圓C.曲線C可能是一個圓D.當時,曲線C是漸近線方程為的雙曲線變式題4鞏固33.已知方程,下面說法正確的是(

)A.若m>0,該方程表示橢圓B.若m<0,該方程表示雙曲線C.若該方程表示的橢圓的離心率為則m=2D.若該方程表示的雙曲線的離心率為則m=-4變式題5鞏固34.已知曲線的方程為,則下列結論正確的是(

)A.當,曲線為橢圓B.當時,曲線為雙曲線,其漸近線方程為C.“或”是“曲線為雙曲線”的充要條件D.不存在實數(shù)使得曲線為離心率為的雙曲線變式題6提升35.已知曲線的方程為,則下列結論正確的是(

)A.當時,曲線為橢圓,其焦距為B.當時,曲線為雙曲線,其離心率為C.存在實數(shù)使得曲線為焦點在軸上的雙曲線D.當時,曲線為雙曲線,其漸近線與圓相切2020年新高考全國2卷數(shù)學高考真題變式題6-10題原題61.要安排3名學生到2個鄉(xiāng)村做志愿者,每名學生只能選擇去一個村,每個村里至少有一名志愿者,則不同的安排方法共有(

)A.2種 B.3種 C.6種 D.8種變式題1基礎2.將6名黨員干部分配到4個貧困村駐村扶貧,每個貧困村至少分配1名黨員干部,則不同的分配方案共有(

)A.2640種 B.4800種 C.1560種 D.7200種變式題2基礎3.將甲、乙、丙、丁、戊5名護士派往、、、四家醫(yī)院,每所醫(yī)院至少派1名護士,則不同的派法總數(shù)有(

)A.480種 B.360種 C.240種 D.120種變式題3鞏固4.從5名同學中選若干名分別到圖書館、食堂做志愿者,若每個地方至少去2名,則不同的安排方法共有(

)A.20種 B.50種 C.80種 D.100種變式題4鞏固5.在6張獎券中有一等獎獎券1張、二等獎獎券2張、三等獎獎券3張.現(xiàn)有3個人抽獎,每人2張,則不同的獲獎情況有(

)A.15 B.18 C.24 D.90變式題5鞏固6.將、、、、、六名工作人員分配到兩個不同的地點進行扶貧驗收,要求、必須在同一組,且每組至少兩人,則不同的分配方案有(

)A.種 B.種 C.種 D.種變式題6提升7.某交通崗共有3人,從周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有(

)種.A.5040 B.1260 C.210 D.630原題78.已知函數(shù)在上單調遞增,則的取值范圍是(

)A. B. C. D.變式題1基礎9.已知函數(shù)在上是x的減函數(shù),則a的取值范圍是(

)A. B. C. D.變式題2基礎10.若函數(shù)在區(qū)間上單調遞增,則實數(shù)a的取值范圍是(

)A. B. C. D.變式題3鞏固11.函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是()A.或 B.C. D.變式題4鞏固12.已知函數(shù)在區(qū)間上單調遞減,則實數(shù)的取值范圍是(

)A. B. C. D.變式題5鞏固13.若函數(shù)的單調遞增區(qū)間為(0,2a],則(

)A. B. C.2 D.4變式題6提升14.已知函數(shù),記,若在區(qū)間上是增函數(shù),則實數(shù)的取值范圍是(

)A. B. C. D.原題815.若定義在的奇函數(shù)f(x)在單調遞減,且f(2)=0,則滿足的x的取值范圍是(

)A. B.C. D.變式題1基礎16.函數(shù)是定義在R上的偶函數(shù),在上是減函數(shù)且,則使的x的取值范圍(

).A. B. C. D.變式題2基礎17.若函數(shù)是定義在R上的偶函數(shù),在上是減函數(shù),且,則使得的x的取值范圍是(

)A. B. C. D.變式題3鞏固18.已知函數(shù),則不等式的解集為(

).A. B.C. D.變式題4鞏固19.已知函數(shù),則關于x的不等式的解集為(

)A. B. C. D.變式題5鞏固20.設函數(shù)在定義域上滿足,若在上是減函數(shù),且,則滿足的的取值范圍為A. B.C. D.變式題6提升21.定義在上的函數(shù)在上單調遞減,且是偶函數(shù),則使成立的的取值范圍是(

)A. B. C. D.原題922.我國新冠肺炎疫情進入常態(tài)化,各地有序推進復工復產,下面是某地連續(xù)11天復工復產指數(shù)折線圖,下列說法正確的是A.這11天復工指數(shù)和復產指數(shù)均逐日增加;B.這11天期間,復產指數(shù)增量大于復工指數(shù)的增量;C.第3天至第11天復工復產指數(shù)均超過80%;D.第9天至第11天復產指數(shù)增量大于復工指數(shù)的增量;變式題1基礎23.如圖是某公司2018年1月至12月空調銷售任務及完成情況的統(tǒng)計圖,如10月份銷售任務是400臺,完成率為90%,下列敘述正確的是A.2018年3月的銷售任務是400臺B.2018年月銷售任務的平均值不超過600臺C.2018年總銷售量為4870臺D.2018年月銷售量最大的是6月份變式題2基礎24.如圖所示的折線圖為某小區(qū)小型超市今年1月份到5月份的營業(yè)額和支出數(shù)據(jù)(利潤=營業(yè)額-支出),根據(jù)折線圖,下列說法正確的是(

)A.該超市這五個月中的營業(yè)額一直在增長;B.該超市這五個月的利潤一直在增長;C.該超市這五個月中五月份的利潤最高;D.該超市這五個月中的營業(yè)額和支出呈正相關.變式題3鞏固25.某品牌手機2019年1月到12月期間的月銷量(單位:百萬臺)數(shù)據(jù)的折線圖如下,根據(jù)該折線圖,下列結論正確的是()A.上半年的月銷售量逐月增加B.與前一個月相比,銷售量增加最多的是11月C.全年的平均月銷售量為2.9百萬臺D.四個季度中,第三個季度的月銷售量波動最小變式題4鞏固26.某企業(yè)2019年12個月的收入與支出數(shù)據(jù)的折線圖如下:已知:利潤=收入-支出,根據(jù)該折線圖,下列說法正確的是(

)A.該企業(yè)2019年1月至6月的總利潤低于2019年7月至12月的總利潤B.該企業(yè)2019年第一季度的利潤約是50萬元C.該企業(yè)2019年4月至7月的月利潤持續(xù)增長D.該企業(yè)2019年11月份的月利潤最大變式題5鞏固27.劉女士的網店經營堅果類食品,2019年各月份的收入、支出(單位:百元)情況的統(tǒng)計如圖所示,下列說法中正確的是()A.4至5月份的收入的變化率與11至12月份的收入的變化率相同B.支出最高值與支出最低值的比是C.第三季度平均收入為5000元D.利潤最高的月份是3月份和10月份變式題6提升28.某同學在微信上查詢到近十年全國高考報名人數(shù)、錄取人數(shù)和山東夏季高考報名人數(shù)的折線圖,其中年的錄取人數(shù)被遮擋了.他又查詢到近十年全國高考錄取率的散點圖,結合圖表中的信息判定下列說法正確的是(

)A.全國高考報名人數(shù)逐年增加B.年全國高考錄取率最高C.年高考錄取人數(shù)約萬D.年山東高考報名人數(shù)在全國的占比最小原題1029.已知曲線.(

)A.若m>n>0,則C是橢圓,其焦點在y軸上B.若m=n>0,則C是圓,其半徑為C.若mn<0,則C是雙曲線,其漸近線方程為D.若m=0,n>0,則C是兩條直線變式題1基礎30.(多選題)方程表示的曲線不可能為(

)A.拋物線 B.橢圓 C.雙曲線 D.圓變式題2基礎31.方程表示的曲線可能是(

)A.橢圓 B.拋物線 C.雙曲線 D.直線變式題3鞏固32.已知曲線C的方程為(且),則下列結論正確的是(

)A.當時,曲線C是焦距為4的雙曲線B.當時,曲線C是離心率為的橢圓C.曲線C可能是一個圓D.當時,曲線C是漸近線方程為的雙曲線變式題4鞏固33.已知方程,下面說法正確的是(

)A.若m>0,該方程表示橢圓B.若m<0,該方程表示雙曲線C.若該方程表示的橢圓的離心率為則m=2D.若該方程表示的雙曲線的離心率為則m=-4變式題5鞏固34.已知曲線的方程為,則下列結論正確的是(

)A.當,曲線為橢圓B.當時,曲線為雙曲線,其漸近線方程為C.“或”是“曲線為雙曲線”的充要條件D.不存在實數(shù)使得曲線為離心率為的雙曲線變式題6提升35.已知曲線的方程為,則下列結論正確的是(

)A.當時,曲線為橢圓,其焦距為B.當時,曲線為雙曲線,其離心率為C.存在實數(shù)使得曲線為焦點在軸上的雙曲線D.當時,曲線為雙曲線,其漸近線與圓相切參考答案:1.C【分析】首先將3名學生分成兩個組,然后將2組學生安排到2個村即可.【詳解】第一步,將3名學生分成兩個組,有種分法第二步,將2組學生安排到2個村,有種安排方法所以,不同的安排方法共有種故選:C【點睛】解答本類問題時一般采取先組后排的策略.2.C【分析】分兩類考慮:第一類,其中1個貧困村分配3名黨員干部,另外3個貧困村各分配1名黨員干部,第二類,其中2個貧困村各分配2名黨員干部,另外2個貧困村各分配1名黨員干部.【詳解】將6名黨員干部分配到4個貧困村駐村扶貧,每個貧困村至少分配1名黨員干部.分兩類考慮:第一類,其中1個貧困村分配3名黨員干部,另外3個貧困村各分配1名黨員干部,此類分配方案種數(shù)為;第二類,其中2個貧困村各分配2名黨員干部,另外2個貧困村各分配1名黨員干部,此類分配方案種數(shù)為.故不同的分配方案共有1560種.故選:C【點睛】本題主要考查排列組合,考查分組分配問題,考查部分平均分組問題,屬于中檔題.3.C【分析】首先將5名護士分成4組,再將5名護士往四家醫(yī)院即可.【詳解】首先將5名護士分成4組,共有,再將5名護士往、、、四家醫(yī)院,共有種派法.故選:C【點睛】本題主要考查均勻分組問題,同時考查學生分析問題的能力,屬于簡單題.4.B【解析】分去4個人或5個人兩種情況進行討論.【詳解】當去4個人時,則安排方法有種,當去5個人時,則安排方法有種,綜上,不同的安排方法共有50種.故選:B.5.A【解析】分兩步,第一步分配一等獎獎券,第二步,分配二等獎獎券,可算出答案.【詳解】第一步:把一等獎獎券分給3人中的一個,有種;第二步:把2張二等獎獎券分配,有兩種情況,①其中一張給了得一等獎的人,另外一張給了剩下兩人中的一人,有種②抽一等獎的人沒有得二等獎,則兩張二等獎獎券分給剩下2人一人一張或者有1人得2張,有種綜上:共有種情況故選:A6.D【分析】先將6人分成2組,按所在組人數(shù)分類,分為2人、3人、4人,剩下人為另一種,求得分組個數(shù),然后再將兩組分配到不同的地方有種方法,根據(jù)乘法原理,即可求解.【詳解】再將、必須在同一組,且每組至少兩人,分組的方法有,將兩組分配到不同的地方共有分配方案.故選:D.【點睛】本題考查排列組合應用問題,限制條件優(yōu)先考慮,先分組后排,屬于基礎題.7.D【解析】把7天分成一組2天,一組2天,一組3天,3個人各選1組值班,即可求解.【詳解】把7天分成一組2天,一組2天,一組3天,3個人各選1組值班,共有種.故選:D.8.D【分析】首先求出的定義域,然后求出的單調遞增區(qū)間即可.【詳解】由得或所以的定義域為因為在上單調遞增所以在上單調遞增所以故選:D【點睛】在求函數(shù)的單調區(qū)間時一定要先求函數(shù)的定義域.9.C【分析】由復合函數(shù)單調性及函數(shù)的定義域得不等關系.【詳解】由題意,解得.故選:C.【點睛】本題考查對數(shù)型復合函數(shù)的單調性,解題時要注意對數(shù)函數(shù)的定義域.10.B【分析】根據(jù)復合函數(shù)單調性之間的關系進行求解即可.【詳解】設,則要使在上單調遞增,則滿足,即,得,即實數(shù)的取值范圍是,故選:B.【點睛】關鍵點點睛:該題考查的是有關復合函數(shù)單調性的應用,結合二次函數(shù)的單調性是解決該題的關鍵.11.B【分析】令,根據(jù)復合函數(shù)的單調性,分和兩種情況討論即可.【詳解】由題可知,令由得或所以函數(shù)的定義域為,在上單調遞增當時,外函數(shù)為減函數(shù),根據(jù)復合函數(shù)“同增異減”可得在定義域內為減函數(shù),不滿足題意;當時,外函數(shù)為增函數(shù),根據(jù)復合函數(shù)“同增異減”可得在定義域上為增函數(shù),因為,所以,,滿足題意.故選:B.12.C【分析】結合已知條件利用復合函數(shù)單調性中的“同增異減”和的定義域即可求解.【詳解】由題意,不妨令,則,因為是單調遞增函數(shù),且在區(qū)間上單調遞減,所以在上單調遞減,從而且,解得,故實數(shù)的取值范圍是.故選:C.13.A【分析】由題意利用復合函數(shù)的單調性,對數(shù)函數(shù)y=x+型函數(shù)的性質,可得0<a<1且2a=,由此求得a的值.【詳解】∵函數(shù)的單調遞增區(qū)間為(0,2a],而y=x+在(0,]上單調減,在[,+∞)上單調增,∴0<a<1且2a=,求得a=,故選A【點睛】本題主要考查復合函數(shù)的單調性,對數(shù)函數(shù)y=x+型函數(shù)的性質,屬于中檔題.14.B【分析】利用換底公式可得,然后對進行化簡,并使用換元法,結合復合函數(shù)單調性進行計算即可.【詳解】則令,由,所以令因為在區(qū)間上是增函數(shù),所以在也是增函數(shù)所以,則即故選:B15.D【分析】首先根據(jù)函數(shù)奇偶性與單調性,得到函數(shù)在相應區(qū)間上的符號,再根據(jù)兩個數(shù)的乘積大于等于零,分類轉化為對應自變量不等式,最后求并集得結果.【詳解】因為定義在上的奇函數(shù)在上單調遞減,且,所以在上也是單調遞減,且,,所以當時,,當時,,所以由可得:或或解得或,所以滿足的的取值范圍是,故選:D.【點睛】本題考查利用函數(shù)奇偶性與單調性解抽象函數(shù)不等式,考查分類討論思想方法,屬中檔題.16.C【解析】由函數(shù)的單調性和奇偶性可得、的解,轉化條件為或,即可得解.【詳解】因為函數(shù)是定義在R上的偶函數(shù),且在上是減函數(shù),,所以函數(shù)在上單調遞增,,所以當時,,當時,,不等式等價于或,解得或.所以使的x的取值范圍為.故選:C.17.D【解析】在R上的偶函數(shù)且在上是減函數(shù),即在上增函數(shù),要使成立,而有結合函數(shù)的性質列不等式,求x取值范圍【詳解】∵偶函數(shù)在上是減函數(shù)∴在上單調遞增∵∴使,即由為偶函數(shù),故∴|x|>3,解得:x<-3或x>3故選:D【點睛】本題考查了函數(shù)奇偶性;結合函數(shù)的單調性,由函數(shù)值的大小關系確定自變量范圍18.A【分析】設函數(shù),判斷其單調性與奇偶性;從而得出單調性與對稱性,將所求不等式化為,根據(jù)函數(shù)單調性,即可求出結果.【詳解】設函數(shù),則函數(shù)是定義域為,根據(jù)指數(shù)函數(shù)與冪函數(shù)的單調性可得,是增函數(shù),是減函數(shù),是增函數(shù),所以在上單調遞增;又,所以是奇函數(shù),其圖象關于原點對稱;又,即的圖象可由向右平移一個單位,再向上平移兩個單位后得到,所以是定義域為的增函數(shù),且其圖像關于點對稱,即有,即.由得,即,即,所以,解得.故選:A.【點睛】關鍵點點睛:求解本題的關鍵在于根據(jù)函數(shù)的解析式,判斷函數(shù)的單調性與對稱性,進而即可求解不等式.19.A【分析】根據(jù)題意可判斷函數(shù)為奇函數(shù)且在上單調遞增,進而根據(jù)奇偶性與單調性解不等式即可.【詳解】解:函數(shù)的定義域為,,所以函數(shù)為奇函數(shù),因為,所以函數(shù)在上單調遞增,所以,所以,即,解得所以不等式的解集為故選:A20.B【分析】根據(jù)判斷出函數(shù)為奇函數(shù),結合函數(shù)的單調性和零點畫出函數(shù)的大致圖像,根據(jù)圖像求得不等式的解集.【詳解】由已知條件知函數(shù)是奇函數(shù),且在上是減函數(shù),,根據(jù)這些特點可以畫出函數(shù)的大致圖像如下圖所示,根據(jù)圖像,得到的的取值范圍為,,的的取值范圍為,.故可求得滿足的的取值范圍為.故選B.【點睛】本小題主要考查函數(shù)的奇偶性和單調性,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.21.B【分析】根據(jù)是偶函數(shù),結合函數(shù)圖像平移變換可知關于對稱,再由函數(shù)在上單調遞減可畫出函數(shù)圖像示意圖,進而解不等式即可得解.【詳解】定義在上的函數(shù)在上單調遞減,且是偶函數(shù),所以的圖像關于對稱,示意圖如下圖所示:而,且在單調遞增,所以若,需滿足或,解得或,所以使成立的的取值范圍為,故選:B.【點睛】本題考查了函數(shù)單調性與對稱性的綜合應用,由單調性解不等式,正確畫出函數(shù)圖像示意圖是解決此類問題常用方法,屬于中檔題.22.CD【分析】注意到折線圖中有遞減部分,可判定A錯誤;注意考查第1天和第11天的復工復產指數(shù)的差的大小,可判定B錯誤;根據(jù)圖象,結合復工復產指數(shù)的意義和增量的意義可以判定CD正確.【詳解】由圖可知,第1天到第2天復工指數(shù)減少,第7天到第8天復工指數(shù)減少,第10天到第11復工指數(shù)減少,第8天到第9天復產指數(shù)減少,故A錯誤;由圖可知,第一天的復產指標與復工指標的差大于第11天的復產指標與復工指標的差,所以這11天期間,復產指數(shù)增量小于復工指數(shù)的增量,故B錯誤;由圖可知,第3天至第11天復工復產指數(shù)均超過80%,故C正確;由圖可知,第9天至第11天復產指數(shù)增量大于復工指數(shù)的增量,故D正確;【點睛】本題考查折線圖表示的函數(shù)的認知與理解,考查理解能力,識圖能力,推理能力,難點在于指數(shù)增量的理解與觀測,屬中檔題.23.ABC【解析】由頻率分布折線圖、密度曲線逐一檢驗即可得解.【詳解】解:由題圖可知選項A正確;2018年月銷售任務的平均值為,故選項B正確;2018年總銷售量為,故選項C正確;2018年月銷售量最大的是5月份,為800臺,故選項D不正確.故選:【點睛】本題考查了頻率分布折線圖、密度曲線,屬于基礎題.24.ACD【分析】利用頻率分布折線圖中的數(shù)據(jù)可計算每月利潤進行分析可得答案.【詳解】解:由一月份到五月份的營業(yè)額和支出數(shù)據(jù)(利潤營業(yè)額支出),可得:一月利潤:;二月利潤:;三月利潤:;四月利潤:;五月利潤:;所以由數(shù)據(jù)可知:、該超市這五個月中,營業(yè)額在增長;正確.、該超市這五個月中,四月份利潤降低;錯誤.、該超市這五個月中,五月份利潤最高;正確.、該超市這五個月中的營業(yè)額和支出呈正相關;正確.故選:ACD.【點睛】本題考查頻率分布折線圖的數(shù)據(jù)分析,屬于基礎題.25.BD【分析】根據(jù)折線圖,逐個分析,計算選項,即可判斷出結果.【詳解】對A,1月銷售量為2.4百萬臺,2月銷售量為1.8百萬臺,顯然是下降了,故選項A錯誤;對于選項B:與前一個月相比,11月銷售量增加量為1.9百萬臺,是最多的,故選項B正確;對C,全年的平均月銷售量為百萬臺,故選項C錯誤;對D,從折線圖觀察可得四個季度中,第三季度的折線最平緩,所以第三季度的月銷售量波動最小,故選項D正確,故選:BD.【點睛】本題考查利用圖表分析數(shù)據(jù),考查簡單的合情推理,是基礎題.26.ABC【解析】A.利用實線與虛線的相對高度來判斷總利潤的情況;B.根據(jù)統(tǒng)計圖進行估計;C.根據(jù)實線與虛線的相對高度來判斷;D.由圖看相對高度的最大值并進行判斷.【詳解】由題意可知:圖中的實線與虛線的相對高度表示當月利潤,A.根據(jù)折線統(tǒng)計圖可知1月至6月的相對高度的總量要比7月至12月的相對高度總量少,故正確;B.由圖可知第一季度的利潤約為:萬元,故正確;C.由圖可知4月至7月的相對高度持續(xù)增加,故正確;D.由圖可知11月的相對高度比7月、8月都要小,故錯誤,故選:ABC.【點睛】本題考查折線統(tǒng)計圖的應用,解答本題的關鍵是理解利潤的含義,對學生的理解與分析能力要求較高,難度較易.27.ACD【解析】根據(jù)折線圖,分別求得4至5月份的收入的變化率與11至12月份的收入的變化率即可判斷A;由折線圖得最高值與最低值即可判斷B;由表可得7,8,9月每個月的收入,計算得平均值即可判斷C;從表中可計算出利潤最高與最低,可判斷D.【詳解】對于A選項,4至5月份的收入的變化率為,11至12月份的變化率為,因而兩個變化率相同,所以A項正確.對于B選項,支出最高值是2月份60百元,支出最低值是5月份的10百元,故支出最高值與支出最低值的比是,故B項錯誤.對于C選項,第三季度的7,8,9月每個月的收入分別為40百元,50百元,60百元,故第三季度的平均收入為百元,故C選項正確.對于D選項,利潤最高的月份是3月份和10月份都是30百元,故D項正確.綜上可知,正確的為ACD,故選:ACD.【點睛】本題考查了折線圖的簡單應用,數(shù)據(jù)分析處理的簡單應用,屬于基礎題.28.BCD【解析】根據(jù)圖表2016年的人數(shù)少于2015年人數(shù),故錯誤,2018年的錄取率為,為最高,正確,2019年高考錄取人數(shù)為,故正確,計算占比得到正確,得到答案.【詳解】2016年的人數(shù)少于2015年人數(shù),故錯誤;2018年的錄取率為,為最高,正確;2019年高考錄取人數(shù)為,故正確;從2010—2019年山東高考報名人數(shù)在全國的占比分別為:,故正確.故選:.【點睛】本題考查了折線圖和散點圖,意在考查學生的計算能力和應用能力.29.ACD【分析】結合選項進行逐項分析求解,時表示橢圓,時表示圓,時表示雙曲線,時表示兩條直線.【詳解】對于A,若,則可化為,因為,所以,即曲線表示焦點在軸上的橢圓,故A正確;對于B,若,則可化為,此時曲線表示圓心在原點,半徑為的圓,故B不正確;對于C,若,則可化為,此時曲線表示雙曲線,由可得,故C正確;對于D,若,則可化為,,此時曲線表示平行于軸的兩條直線,故D正確;故選:ACD.【點睛】本題主要考查曲線方程的特征,熟知常見曲線方程之間的區(qū)別是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).30.BCD【解析】根據(jù)拋物線的定義:平面內與一個定點F和一條

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論