安徽省泗縣三中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第1頁
安徽省泗縣三中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第2頁
安徽省泗縣三中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第3頁
安徽省泗縣三中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第4頁
安徽省泗縣三中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省泗縣三中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線,其中一條漸近線與x軸的夾角為,則雙曲線的漸近線方程是()A. B.C. D.2.已知不等式只有一個整數(shù)解,則m的取值范圍是()A. B.C. D.3.若則()A.?2 B.?1C.1 D.24.命題“對任何實數(shù),都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得5.已知是虛數(shù)單位,若,則復(fù)數(shù)z的虛部為()A.3 B.-3iC.-3 D.3i6.不等式解集為()A. B.C. D.7.命題“若α=,則tanα=1”的逆否命題是A.若α≠,則tanα≠1 B.若α=,則tanα≠1C.若tanα≠1,則α≠ D.若tanα≠1,則α=8.設(shè)雙曲線的方程為,過拋物線的焦點和點的直線為.若的一條漸近線與平行,另一條漸近線與垂直,則雙曲線的方程為()A. B.C. D.9.用數(shù)學(xué)歸納法證明時,第一步應(yīng)驗證不等式()A. B.C. D.10.已知直線過點,且與直線垂直,則直線的方程是()A. B.C. D.11.積分()A. B.C. D.12.如圖,M為OA的中點,以為基底,,則實數(shù)組等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面的法向量為,平面的法向量為,若,則___________.14.設(shè),若,則S=________.15.若不同的平面的一個法向量分別為,,則與的位置關(guān)系為___________.16.某地區(qū)有3個疫苗接種定點醫(yī)院,現(xiàn)有10名志愿者將被派往這3個醫(yī)院協(xié)助新冠疫苗接種工作,每個醫(yī)院至少需要2名至多需要4名志愿者,則不同的安排方法共有___________種.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓M的圓心在直線上,且圓心在第一象限,半徑為3,圓M被直線截得的弦長為4.(1)求圓M的方程;(2)設(shè)P是直線上的動點,證明:以MP為直徑的圓必過定點,并求所有定點的坐標(biāo).18.(12分)如圖,在棱長為2的正方體中,,分別為線段,的中點.(1)求點到平面的距離;(2)求平面與平面夾角的余弦值.19.(12分)△的內(nèi)角A,B,C的對邊分別為a,b,c.已知(1)求角B的大?。唬?)若△不為鈍角三角形,且,,求△的面積20.(12分)如圖,在四棱錐中,平面,底面是直角梯形,,,,,為側(cè)棱包含端點上的動點.(1)當(dāng)時,求證平面;(2)當(dāng)直線與平面所成角的正弦值為時,求二面角的余弦值.21.(12分)已知等差數(shù)列中,(1)分別求數(shù)列的通項公式和前項和;(2)設(shè),求22.(10分)已知直線l經(jīng)過直線,的交點M(1)若直線l與直線平行,求直線l的方程;(2)若直線l與x軸,y軸分別交于A,兩點,且M為線段AB的中點,求的面積(其中O為坐標(biāo)原點)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由已知條件計算可得,即得到結(jié)果.【詳解】由雙曲線,可知漸近線方程為,又雙曲線的一條漸近線與x軸的夾角為,故,即漸近線方程為.故選:C2、B【解析】依據(jù)導(dǎo)函數(shù)得到函數(shù)的單調(diào)性,數(shù)形結(jié)合去求解即可解決.【詳解】不等式只有一個整數(shù)解,可化為只有一個整數(shù)解令,則當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,則當(dāng)時,取最大值,當(dāng)時,恒成立,的草圖如下:,,則若只有一個整數(shù)解,則,即故不等式只有一個整數(shù)解,則m的取值范圍是故選:B3、B【解析】分子分母同除以,化弦為切,代入即得結(jié)果.【詳解】由題意,分子分母同除以,可得.故選:B.4、B【解析】可將原命題變成全稱命題形式,而全稱命題的否定為特稱命題,即可選出答案.【詳解】命題“對任何實數(shù),都有”,可寫成:,使得,此命題為全稱命題,故其否定形式為:,使得.故選:B.5、C【解析】由復(fù)數(shù)的除法運算可得答案.【詳解】由題得,所以復(fù)數(shù)z的虛部為-3.故選:C.6、C【解析】化簡一元二次不等式的標(biāo)準(zhǔn)形式并求出解集即可.【詳解】不等式整理得,解得或,則不等式解集為.故選:.7、C【解析】因為“若,則”的逆否命題為“若,則”,所以“若α=,則tanα=1”的逆否命題是“若tanα≠1,則α≠”.【點評】本題考查了“若p,則q”形式的命題的逆命題、否命題與逆否命題,考查分析問題的能力.8、D【解析】由拋物線的焦點可求得直線的方程為,即得直線的斜率為,再根據(jù)雙曲線的漸近線的方程為,可得,即可求出,得到雙曲線的方程【詳解】由題可知,拋物線焦點為,所以直線的方程為,即直線的斜率為,又雙曲線的漸近線的方程為,所以,,因為,解得故選:【點睛】本題主要考查拋物線的簡單幾何性質(zhì),雙曲線的幾何性質(zhì),以及直線與直線的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題9、B【解析】取即可得到第一步應(yīng)驗證不等式.【詳解】由題意得,當(dāng)時,不等式為故選:B10、D【解析】由題意設(shè)直線方程為,然后將點坐標(biāo)代入求出,從而可求出直線方程【詳解】因為直線與直線垂直,所以設(shè)直線方程為,因為直線過點,所以,得,所以直線方程為,故選:D11、B【解析】根據(jù)定積分的幾何意義求值即可.【詳解】由題設(shè),定積分表示圓在x軸的上半部分,所以.故選:B12、B【解析】根據(jù)空間向量減法的幾何意義進行求解即可.【詳解】,所以實數(shù)組故選:B二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由,可兩平面的法向量也平行,從而可求出,進而可求得答案【詳解】因為平面的法向量為,平面的法向量為,,所以∥,所以存實數(shù)使,所以,所以,解得,所以,故答案為:214、1007【解析】可證f(x)+f(1﹣x)=1,由倒序相加法可得所求為1007對的組合,即1007個1,可得答案【詳解】解:∵函數(shù)f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案為:1007點睛】本題考查倒序相加法求和,推斷出f(x)+f(1﹣x)=1是解題的關(guān)鍵.15、平行【解析】根據(jù)題意得到,得出,即可得到平面與的位置關(guān)系.【詳解】由題意,平面的一個法向量分別為,,可得,所以,所以,即平面與的位置關(guān)系為平行.故答案為:平行16、22050【解析】先分組,再排列,注意部分平均分組問題,需要除以平均組數(shù)的全排列.【詳解】根據(jù)題意,這10名志愿者的安排方法共有兩類:第一類是2,4,4,第二類是3,3,4.故不同的安排方法共有種.故答案為:22050三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析,定點和.【解析】(1)根據(jù)給定條件設(shè)出圓心坐標(biāo),再結(jié)合點到直線距離公式計算作答.(2)設(shè)點,求出圓的方程,結(jié)合方程求出其定點.【小問1詳解】因圓M的圓心在直線上,且圓心在第一象限,設(shè)圓心,且,圓心到直線的距離為,又由解得,從而,而,解得,所以圓M的方程為.【小問2詳解】由(1)知:,設(shè)點,,設(shè)動圓上任意一點當(dāng)與點P,M都不重合時,,有,當(dāng)與點P,M之一重合時,對應(yīng)為零向量,也成立,,,,化簡得:,由,解得或,所以以MP為直徑的圓必過定點和.【點睛】方法點睛:待定系數(shù)法求圓的方程,由題設(shè)條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標(biāo)準(zhǔn)式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應(yīng)該有三個獨立等式18、(1);(2).【解析】(1)以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系.可根據(jù)題意寫出各個點的坐標(biāo),進而求出平面的法向量和的坐標(biāo),點到平面的距離.計算即可求出答案.(2)由(1)知平面的法向量,在把平面的法向量表示出來,平面與平面夾角的余弦值為,計算即可求出答案.【小問1詳解】以為原點,為軸,為軸,為軸,建立如下圖所示的空間直角坐標(biāo)系.由于正方體的棱長為2和,分別為線段,的中點知,.設(shè)平面的法向量為..則..故點到平面的距離.【小問2詳解】平面的法向量,平面與平面夾角的余弦值.19、(1)或;(2).【解析】(1)根據(jù)正弦定理邊角關(guān)系可得,再由三角形內(nèi)角的性質(zhì)求其大小即可.(2)由(1)及題設(shè)有,應(yīng)用余弦定理求得、,最后利用三角形面積公式求△的面積【小問1詳解】由正弦定理得:,又,所以,又B為△的一個內(nèi)角,則,所以或;【小問2詳解】由△不為鈍角三角形,即,又,,由余弦定理,,得(舍去負值),則∴20、(1)證明見解析;(2).【解析】(1)連接交于,連接,證得,從而證得平面;(2)過作于,以為原點,建立空間直角坐標(biāo)系,設(shè),求面的法向量,由直線與平面所成角的正弦值為,求得的值,再用向量法求出二面角的余弦值.【詳解】解:(1)連接交于,連接,由題意,∵,∴,∴,又面,面,∴面.(2)過作于,則在中,,,,以為原點,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,,,,,,,,設(shè)向量為平面的一個法向量,則由,有,令,得;記直線與平面所成的角為,則,解得,此時;設(shè)向量為平面的一個法向量則由,有,令,得;∴二面角的余弦值為.【點睛】本題考查了線面平行的判定與證明,用向量法求線面角,二面角,還考查了學(xué)生的分析能力,空間想象能力,運算能力,屬于中檔題.21、(1),(2)【解析】(1)利用可以求出公差,即可求出數(shù)列的通項公式;(2)通過(1)判斷符號,進而分和兩種情況討論求解即可.【小問1詳解】解:設(shè)數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論