版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省齊市地區(qū)普高聯(lián)誼校2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.關(guān)于x的方程在內(nèi)有解,則實(shí)數(shù)m的取值范圍()A. B.C. D.2.已知數(shù)列是等差數(shù)列,下面的數(shù)列中必為等差數(shù)列的個(gè)數(shù)為()①②③A.0 B.1C.2 D.33.已知是空間的一個(gè)基底,若,,若,則()A B.C.3 D.4.中國(guó)景德鎮(zhèn)陶瓷世界聞名,其中青花瓷最受大家的喜愛,如圖1這個(gè)精美的青花瓷花瓶,它的頸部(圖2)外形上下對(duì)稱,基本可看作是離心率為的雙曲線的一部分繞其虛軸所在直線旋轉(zhuǎn)所形成的曲面,若該頸部中最細(xì)處直徑為16厘米,瓶口直徑為20厘米,則頸部高為()A.10 B.20C.30 D.405.已知,,,,則下列不等關(guān)系正確的是()A. B.C. D.6.若拋物線的焦點(diǎn)與橢圓的左焦點(diǎn)重合,則m的值為()A.4 B.-4C.2 D.-27.如圖,用4種不同的顏色對(duì)A,B,C,D四個(gè)區(qū)域涂色,要求相鄰的兩個(gè)區(qū)域不能用同一種顏色,則不同的涂色方法有()A.24種 B.48種C.72種 D.96種8.如圖甲是第七屆國(guó)際數(shù)學(xué)家大會(huì)(簡(jiǎn)稱ICME—7)的會(huì)徽?qǐng)D案,其主體圖案是由圖乙的一連串直角三角形演化而成的.已知,,,,為直角頂點(diǎn),設(shè)這些直角三角形的周長(zhǎng)從小到大組成的數(shù)列為,令,為數(shù)列的前項(xiàng)和,則()A.8 B.9C.10 D.119.阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得、阿基米德并稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,他對(duì)圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓就是他的研究成果之一.指的是:已知?jiǎng)狱c(diǎn)與兩定點(diǎn)的距離之比,那么點(diǎn)的軌跡就是阿波羅尼斯圓.已知?jiǎng)狱c(diǎn)的軌跡是阿波羅尼斯圓,其方程為,其中,定點(diǎn)為軸上一點(diǎn),定點(diǎn)的坐標(biāo)為,若點(diǎn),則的最小值為()A. B.C. D.10.已知雙曲線:的左、右焦點(diǎn)分別為,,且,點(diǎn)是的右支上一點(diǎn),且,,則雙曲線的方程為()A. B.C. D.11.已知雙曲線滿足,且與橢圓有公共焦點(diǎn),則雙曲線的方程為()A. B.C. D.12.已知梯形中,,且,則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線方程為,則其焦點(diǎn)坐標(biāo)為__________14.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓的中心為原點(diǎn),焦點(diǎn),均在軸上,且,的面積為,則的標(biāo)準(zhǔn)方程為______15.已知直線與雙曲線無(wú)公共點(diǎn),則雙曲線離心率的取值范圍是____16.曲線在處的切線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C經(jīng)過坐標(biāo)原點(diǎn)O和點(diǎn)(4,0),且圓心在x軸上(1)求圓C的方程;(2)已知直線l:與圓C相交于A、B兩點(diǎn),求所得弦長(zhǎng)值18.(12分)如圖,在長(zhǎng)方體中,,點(diǎn)E在棱上運(yùn)動(dòng)(1)證明:;(2)當(dāng)E為棱的中點(diǎn)時(shí),求直線與平面所成角的正弦值;(3)等于何值時(shí),二面角的大小為?19.(12分)如圖,直三棱柱中,底面是邊長(zhǎng)為2的等邊三角形,D為棱AC中點(diǎn).(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.20.(12分)已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且的面積為(為坐標(biāo)原點(diǎn))(1)求拋物線的標(biāo)準(zhǔn)方程;(2)點(diǎn)、是拋物線上異于原點(diǎn)的兩點(diǎn),直線、的斜率分別為、,若,求證:直線恒過定點(diǎn)21.(12分)在數(shù)列中,,是與的等差中項(xiàng),(1)求證:數(shù)列是等差數(shù)列(2)令,求數(shù)列的前項(xiàng)的和22.(10分)如圖所示,在空間四邊形中,,分別為,的中點(diǎn),,分別在,上,且.求證:(1)、、、四點(diǎn)共面;(2)與的交點(diǎn)在直線上
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】當(dāng)時(shí),顯然不成立,當(dāng)時(shí),分離變量,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】當(dāng)時(shí),可得顯然不成立;當(dāng)時(shí),由于方程可轉(zhuǎn)化為,令,可得,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取唯一的極大值,也是最大值,所以,所以,即,所以實(shí)數(shù)m的取值范圍.故選:A.2、C【解析】根據(jù)等差數(shù)列的定義判斷【詳解】設(shè)的公差為,則,是等差數(shù)列,,是常數(shù)列,也是等差數(shù)列,若,則不是等差數(shù)列,故選:C3、C【解析】由,可得存在實(shí)數(shù),使,然后將代入化簡(jiǎn)可求得結(jié)果【詳解】,,因?yàn)?,所以存在?shí)數(shù),使,所以,所以,所以,得,,所以,故選:C4、B【解析】設(shè)雙曲線方程為,根據(jù)已知條件可得的值,由可得雙曲線的方程,再將代入方程可得的值,即可求解.【詳解】因?yàn)殡p曲線焦點(diǎn)在軸上,設(shè)雙曲線方程為由雙曲線的性質(zhì)可知:該頸部中最細(xì)處直徑為實(shí)軸長(zhǎng),所以,可得,因?yàn)殡x心率為,即,可得,所以,所以雙曲線的方程為:,因瓶口直徑為20厘米,根據(jù)對(duì)稱性可知頸部最右點(diǎn)橫坐標(biāo)為,將代入雙曲線可得,解得:,所以頸部高為,故選:B5、C【解析】不等式性質(zhì)相關(guān)的題型,可以通過舉反例的方式判斷正誤.【詳解】若、均為負(fù)數(shù),因?yàn)?,則,故A錯(cuò).若、,則,故B錯(cuò).由不等式的性質(zhì)可知,因?yàn)椋?,故C對(duì).若,因?yàn)?,所以,故D錯(cuò).故選:C.6、B【解析】根據(jù)拋物線和橢圓焦點(diǎn)與其各自標(biāo)準(zhǔn)方程的關(guān)系即可求解.【詳解】由題可知拋物線焦點(diǎn)為,橢圓左焦點(diǎn)為,∴.故選:B.7、B【解析】按涂色順序進(jìn)行分四步,根據(jù)分步乘法計(jì)數(shù)原理可得解.【詳解】按涂色順序進(jìn)行分四步:涂A部分時(shí),有4種涂法;涂B部分時(shí),有3種涂法;涂C部分時(shí),有2種涂法;涂D部分時(shí),有2種涂法.由分步乘法計(jì)數(shù)原理,得不同的涂色方法共有種.故選:B.8、B【解析】由題意可得的邊長(zhǎng),進(jìn)而可得周長(zhǎng)及,進(jìn)而可得,可得解.【詳解】由,可得,,,,所以,,所以前項(xiàng)和,所以,故選:B.9、D【解析】設(shè),,根據(jù)和求出a的值,由,兩點(diǎn)之間直線最短,可得的最小值為,根據(jù)坐標(biāo)求出即可.【詳解】設(shè),,所以,由,所以,因?yàn)榍?,所以,整理可得,又?dòng)點(diǎn)M的軌跡是,所以,解得,所以,又,所以,因?yàn)?,所以的最小值,?dāng)M在位置或時(shí)等號(hào)成立.故選:D10、B【解析】畫出圖形,利用已知條件轉(zhuǎn)化求解,關(guān)系,利用,解得,即可得到雙曲線的方程【詳解】由題意雙曲線的圖形如圖,連接與軸交于點(diǎn),設(shè),,因?yàn)?,所以,因?yàn)?,所以,則,因?yàn)辄c(diǎn)是的右支上一點(diǎn),所以,所以,則,因?yàn)椋?,,由勾股定理可得:,即,解得,則,所以雙曲線的方程為:故選:B11、A【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,利用雙曲線,結(jié)合建立方程求出,,即可求出雙曲線的漸近線方程【詳解】橢圓的標(biāo)準(zhǔn)方程為,橢圓中的,雙曲線的焦點(diǎn)與橢圓的焦點(diǎn)相同,雙曲線中,雙曲線滿足,即又在雙曲線中,即,解得:,所以雙曲線的方程為,故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題主要考查雙曲線方程的求解,根據(jù)橢圓和雙曲線的關(guān)系建立方程求出,,是解決本題的關(guān)鍵,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題12、D【解析】根據(jù)共線定理、平面向量的加法和減法法則,即可求得,進(jìn)而求出的值,即可求出結(jié)果.【詳解】因?yàn)?,所以又,所?故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先將拋物線的方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程的形式,即可判斷拋物線的焦點(diǎn)坐標(biāo)為,從而解得答案.【詳解】解:因?yàn)閽佄锞€方程為,即,所以,,所以拋物線的焦點(diǎn)坐標(biāo)為,故答案為:.14、【解析】利用待定系數(shù)法列出關(guān)于的方程解出即可得結(jié)果.【詳解】設(shè)的標(biāo)準(zhǔn)方程為,則解得所以的標(biāo)準(zhǔn)方程為故答案為:.15、【解析】聯(lián)立直線得,由無(wú)公共點(diǎn)得,進(jìn)而得,即可求出離心率的取值范圍.【詳解】聯(lián)立直線與雙曲線可得,整理得,顯然,由方程無(wú)解可得,即,則,,又離心率大于1,故離心率的取值范圍是.故答案為:.16、【解析】先求出函數(shù)的導(dǎo)函數(shù),然后結(jié)合導(dǎo)數(shù)的幾何意義求解即可.【詳解】解:由,得,則,即當(dāng)時(shí),,所以切線方程為:,故答案為:.【點(diǎn)睛】本題考查了曲線在某點(diǎn)處的切線方程的求法,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求出圓心和半徑,寫出圓的方程;(2)求出圓心到直線距離,進(jìn)而利用垂徑定理求出弦長(zhǎng).【小問1詳解】由題意可得,圓心為(2,0),半徑為2.則圓的方程為;【小問2詳解】由(1)可知:圓C半徑為,設(shè)圓心(2,0)到l的距離為d,則,由垂徑定理得:18、(1)證明見解析;(2);(3).【解析】(1)連接、,長(zhǎng)方體、線面垂直的性質(zhì)有、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)連接,由已知條件及勾股定理可得、,即可求、,等體積法求到面的距離,又直線與面所成角即為與面所成角,即可求線面角的正弦值.(3)由題設(shè)易知二面角為,過作于,連接,可得二面角平面角為,令,由長(zhǎng)方體的性質(zhì)及勾股定理構(gòu)造方程求即可.【小問1詳解】由題設(shè),連接、,又長(zhǎng)方體中,∴為正方形,即,又面,面,即,∵,面,∴面,而面,即.【小問2詳解】連接,由E為棱的中點(diǎn),則,∴,又,故,∴,又,,故,則,由,若到面的距離為,又,,∴,可得,又,∴直線與面所成角即為與面所成角為,故.【小問3詳解】二面角大小為,即二面角為,由長(zhǎng)方體性質(zhì)知:面,面,則,過作于,連接,又,∴面,則二面角平面角為,∴,令,則,故,而,,∴,∴,整理得,解得.∴時(shí),二面角的大小為.19、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設(shè),以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點(diǎn),在中,、分別為和中點(diǎn),,又因平面平面,面,面,平面【小問2詳解】解:設(shè),以為坐標(biāo)原點(diǎn)如圖建系,則,,所以、,設(shè)平面的法向量則,故可取設(shè)平面的法向量,則,故可取,因?yàn)槊媾c面的夾角余弦值為,所以,即,解得,20、(1);(2)證明見解析.【解析】(1)由點(diǎn)在拋物線上可得出,再利用三角形的面積公式可得出關(guān)于的等式,解出正數(shù)的值,即可得出拋物線的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)、,利用斜率公式結(jié)合已知條件可得出的值,分析可知直線不與軸垂直,可設(shè)直線的方程為,將該直線方程與拋物線的方程聯(lián)立,利用韋達(dá)定理求出的值,即可得出結(jié)論.【小問1詳解】解:拋物線的焦點(diǎn)為,由已知可得,則,,,解得,因此,拋物線的方程為.【小問2詳解】證明:設(shè)點(diǎn)、,則,可得.若直線軸,則該直線與拋物線只有一個(gè)交點(diǎn),不合乎題意.設(shè)直線的方程為,聯(lián)立,可得,由韋達(dá)定理可得,可得,此時(shí),合乎題意.所以,直線的方程為,故直線恒過定點(diǎn).21、(1)證明見解析;(2).【解析】(1)求得,利用等差數(shù)列的定義可證得結(jié)論成立;(2)求出,可計(jì)算得出,利用并項(xiàng)求和法可求得數(shù)列的前項(xiàng)的和.小
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度教育機(jī)構(gòu)聘用兼職講師合同書3篇
- 2025年度農(nóng)村個(gè)人房屋買賣協(xié)議書(含農(nóng)業(yè)物聯(lián)網(wǎng)技術(shù)應(yīng)用)3篇
- 二零二五年度農(nóng)產(chǎn)品收購(gòu)加工一體化合同范本3篇
- 二零二五年度戶外廣告牌使用權(quán)租賃協(xié)議2篇
- 二零二五年度公司員工股權(quán)激勵(lì)合伙協(xié)議3篇
- 2025年度新能源公司股權(quán)轉(zhuǎn)讓及技術(shù)合作合同3篇
- 二零二五年度石油化工機(jī)械維修保障協(xié)議2篇
- 二零二五年度全屋衣柜定制與售后保障服務(wù)合同3篇
- 2025年度生豬養(yǎng)殖與農(nóng)業(yè)保險(xiǎn)產(chǎn)品開發(fā)合作協(xié)議2篇
- 2025年度離婚后雙方情感修復(fù)及溝通協(xié)議3篇
- 2024版智能硬件產(chǎn)品研發(fā)合作協(xié)議3篇
- 甘肅省蘭州市第一中學(xué)2023-2024學(xué)年高一上學(xué)期期末考試 物理 含解析
- 草地調(diào)查規(guī)劃學(xué)知到智慧樹章節(jié)測(cè)試課后答案2024年秋東北農(nóng)業(yè)大學(xué)
- 2024年礦產(chǎn)資源開發(fā)咨詢服務(wù)合同
- 上海市2024-2025學(xué)年高一語(yǔ)文下學(xué)期期末試題含解析
- 建筑物拆除的拆除工廠考核試卷
- 廣東省深圳市2023-2024學(xué)年高二上學(xué)期期末測(cè)試英語(yǔ)試卷(含答案)
- 乘風(fēng)化麟 蛇我其誰(shuí) 2025XX集團(tuán)年終總結(jié)暨頒獎(jiǎng)盛典
- 人教版一年級(jí)數(shù)學(xué)2024版上冊(cè)期末測(cè)評(píng)(提優(yōu)卷一)(含答案)
- 醫(yī)療護(hù)理員理論知識(shí)考核試題題庫(kù)及答案
- 湖北省荊州市八縣市區(qū)2023-2024學(xué)年高二上學(xué)期1月期末聯(lián)考數(shù)學(xué)試題 附答案
評(píng)論
0/150
提交評(píng)論