版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
寧夏銀川市寧夏大學(xué)附中2025屆高一上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列四組函數(shù)中,表示相同函數(shù)的一組是()A.,B.,C.,D.,2.命題“”否定是()A. B.C. D.3.函數(shù)的圖象是()A. B.C. D.4.已知角的終邊過點,若,則A.-10 B.10C. D.5.已知,則的最小值為()A. B.2C. D.46.已知角的頂點在原點,始邊與軸正半軸重合,終邊上有一點,,則()A. B.C. D.7.已知全集,集合,則()A. B.C. D.8.在空間直角坐標(biāo)系中,一個三棱錐的頂點坐標(biāo)分別是,,,.則該三棱錐的體積為()A. B.C. D.29.已知冪函數(shù)的圖象過(4,2)點,則A. B.C. D.10.下列函數(shù)中,以為最小正周期的偶函數(shù)是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x二、填空題:本大題共6小題,每小題5分,共30分。11.已知冪函數(shù)的圖象過點______12.當(dāng)時x≠0時的最小值是____.13.水葫蘆又名鳳眼蓮,是一種原產(chǎn)于南美洲亞馬遜河流域?qū)儆谟昃没?,鳳眼藍屬的一種漂浮性水生植物,繁殖極快,廣泛分布于世界各地,被列入世界百大外來入侵種之一.某池塘中野生水葫蘆的面積與時間的函數(shù)關(guān)系圖象如圖所示.假設(shè)其函數(shù)關(guān)系為指數(shù)函數(shù),并給出下列說法:①此指數(shù)函數(shù)的底數(shù)為2;②在第5個月時,野生水葫蘆的面積就會超過30m2;③野生水葫蘆從4m2蔓延到12m2只需1.5個月;④設(shè)野生水葫蘆蔓延至2m2、3m2、6m2所需的時間分別為t1、t2、t3,則有t1+t2=t3;⑤野生水葫蘆在第1到第3個月之間蔓延的平均速度等于在第2到第4個月之間蔓延的平均速度.其中,正確的是________.(填序號).14.在函數(shù)的圖像上,有______個橫、縱坐標(biāo)均為整數(shù)的點15.已知=,則=_____.16.某時鐘的秒針端點到中心點的距離為6cm,秒針均勻地繞點旋轉(zhuǎn),當(dāng)時間時,點與鐘面上標(biāo)12的點重合,將,兩點的距離表示成的函數(shù),則_______,其中三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.英國數(shù)學(xué)家泰勒發(fā)現(xiàn)了如下公式:,其中,此公式有廣泛的用途,例如利用公式得到一些不等式:當(dāng)時,,.(1)證明:當(dāng)時,;(2)設(shè),若區(qū)間滿足當(dāng)定義域為時,值域也為,則稱為的“和諧區(qū)間”.(i)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由;(ii)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由.18.已知二次函數(shù),滿足,.(1)求函數(shù)的解析式;(2)求在區(qū)間上的值域.19.如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,CA=CB,點D,E分別為AB,AC的中點.求證:(1)DE∥平面PBC;(2)CD⊥平面PAB20.如圖,在四棱錐中,,,,且,分別為的中點.(1)求證:平面;(2)求證:平面;(3)若二面角的大小為,求四棱錐的體積.21.如圖,四棱錐中,底面是正方形,平面,,為與的交點,為棱上一點.(1)證明:平面平面;(2)若平面,求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)相同函數(shù)的判斷原則進行定義域的判斷即可選出答案.【詳解】解:由題意得:對于選項A:的定義域為,的定義域為,所以這兩個函數(shù)的定義域不同,不表示相同的函數(shù),故A錯誤;對于選項B:的定義域為,的定義域為,所以這兩個函數(shù)的定義域不同,不表示相同的函數(shù),故B錯誤;對于選項C:的定義域為,的定義域為,這兩函數(shù)的定義域相同,且對應(yīng)關(guān)系也相同,所以表示相同的函數(shù),故C正確;對于選項D:的定義域為,的定義域為或,所以這兩個函數(shù)的定義域不同,不表示相同的函數(shù),故D錯誤.故選:C2、A【解析】根據(jù)全稱命題的否定為特稱命題,即可得到答案【詳解】全稱命題的否定為特稱命題,命題“”的否定是,故選:A3、C【解析】由已知可得,從而可得函數(shù)圖象【詳解】對于y=x+,當(dāng)x>0時,y=x+1;當(dāng)x<0時,y=x-1.即,故其圖象應(yīng)為C.故選:C4、A【解析】因為角的終邊過點,所以,得,故選A.5、C【解析】根據(jù)給定條件利用均值不等式直接計算作答.【詳解】因為,則,當(dāng)且僅當(dāng),即時取“=”,所以的最小值為.故選:C6、B【解析】由三角函數(shù)定義列式,計算,再由所給條件判斷得解.【詳解】由題意知,故,又,∴.故選:B7、A【解析】首先進行并集運算,然后進行補集運算即可.【詳解】由題意可得:,則.故選:A.8、A【解析】由題,在空間直角坐標(biāo)系中找到對應(yīng)的點,進而求解即可【詳解】由題,如圖所示,則,故選:A【點睛】本題考查三棱錐的體積,考查空間直角坐標(biāo)系的應(yīng)用9、A【解析】詳解】由題意可設(shè),又函數(shù)圖象過定點(4,2),,,從而可知,則.故選A10、D【解析】A中,周期為,不是偶函數(shù);B中,周期為,函數(shù)為奇函數(shù);C中,周期為,函數(shù)為奇函數(shù);D中,周期為,函數(shù)為偶函數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】利用冪函數(shù)的定義先求出其解析式,進而得出答案【詳解】設(shè)冪函數(shù)為常數(shù),冪函數(shù)的圖象過點,,解得故答案為3【點睛】本題考查冪函數(shù)的定義,正確理解冪函數(shù)的定義是解題的關(guān)鍵12、【解析】直接利用基本不等式的應(yīng)用求出結(jié)果【詳解】解:由于,所以(當(dāng)且僅當(dāng)時,等號成立)故最小值為故答案為:13、①②④【解析】設(shè)且,根據(jù)圖像求出,結(jié)合計算進而可判斷①②③④;根據(jù)第1到第3個月、第2到第4個月的面積即可求出對應(yīng)的平均速度,進而判斷⑤.【詳解】因為其關(guān)系為指數(shù)函數(shù),所以可設(shè)且,又圖像過點,所以.所以指數(shù)函數(shù)的底數(shù)為2,故①正確;當(dāng)時,,故②正確;當(dāng)y=4時,;當(dāng)y=12時,;所以,故③錯誤;因為,所以,故④正確;第1到第3個月之間的平均速度為:,第2到第4個月之間的平均速度為:,,故⑤錯誤.故答案為:①②④14、3【解析】由題可得函數(shù)為減函數(shù),利用賦值法結(jié)合條件及函數(shù)的性質(zhì)即得.【詳解】因為,所以函數(shù)在R上單調(diào)遞減,又,,,,且當(dāng)時,,當(dāng)時,令,則,綜上,函數(shù)的圖像上,有3個橫、縱坐標(biāo)均為整數(shù)的點故答案為:3.15、##0.6【解析】尋找角之間的聯(lián)系,利用誘導(dǎo)公式計算即可【詳解】故答案為:16、【解析】設(shè)函數(shù)解析式為,由題意將、代入求出參數(shù)值,即可得解析式.【詳解】設(shè),由題意知:,當(dāng)時,,則,,令得;當(dāng)時,,則,,令得,所以.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(i)不存在“和諧區(qū)間”,理由見解析(ii)存在,有唯一的“和諧區(qū)間”【解析】(1)利用來證得結(jié)論成立.(2)(i)通過證明方程只有一個實根來判斷出此時不存在“和諧區(qū)間”.(ii)對的取值進行分類討論,結(jié)合的單調(diào)性以及(1)的結(jié)論求得唯一的“和諧區(qū)間”.【小問1詳解】由已知當(dāng)時,,得,所以當(dāng)時,.【小問2詳解】(i)時,假設(shè)存在,則由知,注意到,故,所以在單調(diào)遞增,于是,即是方程的兩個不等實根,易知不是方程的根,由已知,當(dāng)時,,令,則有時,,即,故方程只有一個實根0,故不存在“和諧區(qū)間”.(ii)時,假設(shè)存在,則由知若,則由,知,與值域是矛盾,故不存在“和諧區(qū)間”,同理,時,也不存在,下面討論,若,則,故最小值為,于是,所以,所以最大值為2,故,此時的定義域為,值域為,符合題意.若,當(dāng)時,同理可得,舍去,當(dāng)時,在上單調(diào)遞減,所以,于是,若即,則,故,與矛盾;若,同理,矛盾,所以,即,由(1)知當(dāng)時,,因為,所以,從而,,從而,矛盾,綜上所述,有唯一的“和諧區(qū)間”.【點睛】對于“新定義”的題目,關(guān)鍵是要運用新定義的知識以及原有的數(shù)學(xué)知識來進行求解.本題有兩個“新定義”,一個是泰勒發(fā)現(xiàn)的公式,另一個是“和諧區(qū)間”.泰勒發(fā)現(xiàn)的公式可以直接用于證明,“和諧區(qū)間”可轉(zhuǎn)化為函數(shù)的單調(diào)性來求解.18、(1)(2)【解析】(1)由可得,由可得出關(guān)于、的方程組,解出這兩個未知數(shù)的值,可得出函數(shù)的解析式;(2)由二次函數(shù)的基本性質(zhì)可求得函數(shù)在區(qū)間上的值域.【小問1詳解】解:由可得,,由得,所以,解得,所以.【小問2詳解】解:由(1)可得:,則的圖象的對稱軸方程為,,又因為,,所以,在區(qū)間上的值域為.19、(1)證明見解析;(2)證明見解析.【解析】(1)由點D、E分別為AB、AC中點得知DE∥BC,由此證得DE∥平面PBC;(2)要證CD⊥平面PAB,只需證明垂直平面內(nèi)的兩條相交直線與即可.【詳解】(1)因為點D、E分別為AB、AC中點,所以DE∥BC又因為DE?平面PBC,BC?平面PBC,所以DE∥平面PBC(2)因為CA=CB,點D為AB中點,所以CD⊥AB因為PA⊥平面ABC,CD?平面ABC,所以PA⊥CD又因為PA∩AB=A,所以CD⊥平面PAB【點睛】本題考查線面平行的證明,線面垂直的證明,屬于基礎(chǔ)題.垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.20、(1)見解析(2)見解析(3)【解析】(1)取的中點,根據(jù)題意易證四邊形為平行四邊形,所以,從而易證結(jié)論;(2)由,可得線面垂直;(3)由二面角的大小為,可得,求出底面直角梯形的面積,進而可得四棱錐的體積.試題解析:(1)取的中點,連接,∵為中點,∴,由已知,∴,∴四邊形為平行四邊形,∴.又平面,平面,∴平面.(2)連接,∵,∴,又,∴又,為中點,∴,∴,∵,∴平面.(3)取的中點,連接.∴,,∵,∴,又,為的中點,∴,故為二面角的平面角.∴,∵平面,∴,由已知,四邊形為直角梯形,∴,∴.點睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.(1)證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024樓頂廣告牌制作加工合同樣本
- 2024棉花收購合同范文
- 2024年安全員職責(zé)履行及待遇約定的合同
- 2024年度租賃物維修保養(yǎng)合同服務(wù)內(nèi)容與責(zé)任劃分
- 2024年度智能穿戴設(shè)備采購供應(yīng)合同
- 2024企業(yè)間就市場營銷合作合同
- 2024云計算服務(wù)提供商股權(quán)轉(zhuǎn)讓合同
- 2024年體育賽事贊助合同贊助金額與權(quán)益分配
- 2024年北京市影視作品制作委托合同
- 2024年企業(yè)碳足跡監(jiān)測與減排合同
- 旅行社行業(yè)發(fā)展前景與機遇展望報告
- 項目組織管理機構(gòu)及人員配備(完整版)
- 機械設(shè)備:低空經(jīng)濟系列報告(一):他山之石-Joby的前世今生
- 信息化作戰(zhàn)平臺
- 眩暈病個案護理
- 幕墻施工重難點分析及解決措施
- 《Python程序設(shè)計案例教程》 課件 4.3字典
- 環(huán)境測評行業(yè)分析
- 2024年武警部隊招聘專業(yè)技能類文職人員1824人高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 人工智能行業(yè)的創(chuàng)新思維培訓(xùn)與發(fā)展
- 肝穿刺病人術(shù)后的護理措施
評論
0/150
提交評論