寧夏銀川市寧夏大學附中2025屆高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
寧夏銀川市寧夏大學附中2025屆高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
寧夏銀川市寧夏大學附中2025屆高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
寧夏銀川市寧夏大學附中2025屆高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
寧夏銀川市寧夏大學附中2025屆高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

寧夏銀川市寧夏大學附中2025屆高一上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列四組函數(shù)中,表示相同函數(shù)的一組是()A.,B.,C.,D.,2.命題“”否定是()A. B.C. D.3.函數(shù)的圖象是()A. B.C. D.4.已知角的終邊過點,若,則A.-10 B.10C. D.5.已知,則的最小值為()A. B.2C. D.46.已知角的頂點在原點,始邊與軸正半軸重合,終邊上有一點,,則()A. B.C. D.7.已知全集,集合,則()A. B.C. D.8.在空間直角坐標系中,一個三棱錐的頂點坐標分別是,,,.則該三棱錐的體積為()A. B.C. D.29.已知冪函數(shù)的圖象過(4,2)點,則A. B.C. D.10.下列函數(shù)中,以為最小正周期的偶函數(shù)是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x二、填空題:本大題共6小題,每小題5分,共30分。11.已知冪函數(shù)的圖象過點______12.當時x≠0時的最小值是____.13.水葫蘆又名鳳眼蓮,是一種原產(chǎn)于南美洲亞馬遜河流域?qū)儆谟昃没疲P眼藍屬的一種漂浮性水生植物,繁殖極快,廣泛分布于世界各地,被列入世界百大外來入侵種之一.某池塘中野生水葫蘆的面積與時間的函數(shù)關(guān)系圖象如圖所示.假設(shè)其函數(shù)關(guān)系為指數(shù)函數(shù),并給出下列說法:①此指數(shù)函數(shù)的底數(shù)為2;②在第5個月時,野生水葫蘆的面積就會超過30m2;③野生水葫蘆從4m2蔓延到12m2只需1.5個月;④設(shè)野生水葫蘆蔓延至2m2、3m2、6m2所需的時間分別為t1、t2、t3,則有t1+t2=t3;⑤野生水葫蘆在第1到第3個月之間蔓延的平均速度等于在第2到第4個月之間蔓延的平均速度.其中,正確的是________.(填序號).14.在函數(shù)的圖像上,有______個橫、縱坐標均為整數(shù)的點15.已知=,則=_____.16.某時鐘的秒針端點到中心點的距離為6cm,秒針均勻地繞點旋轉(zhuǎn),當時間時,點與鐘面上標12的點重合,將,兩點的距離表示成的函數(shù),則_______,其中三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.英國數(shù)學家泰勒發(fā)現(xiàn)了如下公式:,其中,此公式有廣泛的用途,例如利用公式得到一些不等式:當時,,.(1)證明:當時,;(2)設(shè),若區(qū)間滿足當定義域為時,值域也為,則稱為的“和諧區(qū)間”.(i)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由;(ii)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由.18.已知二次函數(shù),滿足,.(1)求函數(shù)的解析式;(2)求在區(qū)間上的值域.19.如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,CA=CB,點D,E分別為AB,AC的中點.求證:(1)DE∥平面PBC;(2)CD⊥平面PAB20.如圖,在四棱錐中,,,,且,分別為的中點.(1)求證:平面;(2)求證:平面;(3)若二面角的大小為,求四棱錐的體積.21.如圖,四棱錐中,底面是正方形,平面,,為與的交點,為棱上一點.(1)證明:平面平面;(2)若平面,求三棱錐的體積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)相同函數(shù)的判斷原則進行定義域的判斷即可選出答案.【詳解】解:由題意得:對于選項A:的定義域為,的定義域為,所以這兩個函數(shù)的定義域不同,不表示相同的函數(shù),故A錯誤;對于選項B:的定義域為,的定義域為,所以這兩個函數(shù)的定義域不同,不表示相同的函數(shù),故B錯誤;對于選項C:的定義域為,的定義域為,這兩函數(shù)的定義域相同,且對應(yīng)關(guān)系也相同,所以表示相同的函數(shù),故C正確;對于選項D:的定義域為,的定義域為或,所以這兩個函數(shù)的定義域不同,不表示相同的函數(shù),故D錯誤.故選:C2、A【解析】根據(jù)全稱命題的否定為特稱命題,即可得到答案【詳解】全稱命題的否定為特稱命題,命題“”的否定是,故選:A3、C【解析】由已知可得,從而可得函數(shù)圖象【詳解】對于y=x+,當x>0時,y=x+1;當x<0時,y=x-1.即,故其圖象應(yīng)為C.故選:C4、A【解析】因為角的終邊過點,所以,得,故選A.5、C【解析】根據(jù)給定條件利用均值不等式直接計算作答.【詳解】因為,則,當且僅當,即時取“=”,所以的最小值為.故選:C6、B【解析】由三角函數(shù)定義列式,計算,再由所給條件判斷得解.【詳解】由題意知,故,又,∴.故選:B7、A【解析】首先進行并集運算,然后進行補集運算即可.【詳解】由題意可得:,則.故選:A.8、A【解析】由題,在空間直角坐標系中找到對應(yīng)的點,進而求解即可【詳解】由題,如圖所示,則,故選:A【點睛】本題考查三棱錐的體積,考查空間直角坐標系的應(yīng)用9、A【解析】詳解】由題意可設(shè),又函數(shù)圖象過定點(4,2),,,從而可知,則.故選A10、D【解析】A中,周期為,不是偶函數(shù);B中,周期為,函數(shù)為奇函數(shù);C中,周期為,函數(shù)為奇函數(shù);D中,周期為,函數(shù)為偶函數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】利用冪函數(shù)的定義先求出其解析式,進而得出答案【詳解】設(shè)冪函數(shù)為常數(shù),冪函數(shù)的圖象過點,,解得故答案為3【點睛】本題考查冪函數(shù)的定義,正確理解冪函數(shù)的定義是解題的關(guān)鍵12、【解析】直接利用基本不等式的應(yīng)用求出結(jié)果【詳解】解:由于,所以(當且僅當時,等號成立)故最小值為故答案為:13、①②④【解析】設(shè)且,根據(jù)圖像求出,結(jié)合計算進而可判斷①②③④;根據(jù)第1到第3個月、第2到第4個月的面積即可求出對應(yīng)的平均速度,進而判斷⑤.【詳解】因為其關(guān)系為指數(shù)函數(shù),所以可設(shè)且,又圖像過點,所以.所以指數(shù)函數(shù)的底數(shù)為2,故①正確;當時,,故②正確;當y=4時,;當y=12時,;所以,故③錯誤;因為,所以,故④正確;第1到第3個月之間的平均速度為:,第2到第4個月之間的平均速度為:,,故⑤錯誤.故答案為:①②④14、3【解析】由題可得函數(shù)為減函數(shù),利用賦值法結(jié)合條件及函數(shù)的性質(zhì)即得.【詳解】因為,所以函數(shù)在R上單調(diào)遞減,又,,,,且當時,,當時,令,則,綜上,函數(shù)的圖像上,有3個橫、縱坐標均為整數(shù)的點故答案為:3.15、##0.6【解析】尋找角之間的聯(lián)系,利用誘導公式計算即可【詳解】故答案為:16、【解析】設(shè)函數(shù)解析式為,由題意將、代入求出參數(shù)值,即可得解析式.【詳解】設(shè),由題意知:,當時,,則,,令得;當時,,則,,令得,所以.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(i)不存在“和諧區(qū)間”,理由見解析(ii)存在,有唯一的“和諧區(qū)間”【解析】(1)利用來證得結(jié)論成立.(2)(i)通過證明方程只有一個實根來判斷出此時不存在“和諧區(qū)間”.(ii)對的取值進行分類討論,結(jié)合的單調(diào)性以及(1)的結(jié)論求得唯一的“和諧區(qū)間”.【小問1詳解】由已知當時,,得,所以當時,.【小問2詳解】(i)時,假設(shè)存在,則由知,注意到,故,所以在單調(diào)遞增,于是,即是方程的兩個不等實根,易知不是方程的根,由已知,當時,,令,則有時,,即,故方程只有一個實根0,故不存在“和諧區(qū)間”.(ii)時,假設(shè)存在,則由知若,則由,知,與值域是矛盾,故不存在“和諧區(qū)間”,同理,時,也不存在,下面討論,若,則,故最小值為,于是,所以,所以最大值為2,故,此時的定義域為,值域為,符合題意.若,當時,同理可得,舍去,當時,在上單調(diào)遞減,所以,于是,若即,則,故,與矛盾;若,同理,矛盾,所以,即,由(1)知當時,,因為,所以,從而,,從而,矛盾,綜上所述,有唯一的“和諧區(qū)間”.【點睛】對于“新定義”的題目,關(guān)鍵是要運用新定義的知識以及原有的數(shù)學知識來進行求解.本題有兩個“新定義”,一個是泰勒發(fā)現(xiàn)的公式,另一個是“和諧區(qū)間”.泰勒發(fā)現(xiàn)的公式可以直接用于證明,“和諧區(qū)間”可轉(zhuǎn)化為函數(shù)的單調(diào)性來求解.18、(1)(2)【解析】(1)由可得,由可得出關(guān)于、的方程組,解出這兩個未知數(shù)的值,可得出函數(shù)的解析式;(2)由二次函數(shù)的基本性質(zhì)可求得函數(shù)在區(qū)間上的值域.【小問1詳解】解:由可得,,由得,所以,解得,所以.【小問2詳解】解:由(1)可得:,則的圖象的對稱軸方程為,,又因為,,所以,在區(qū)間上的值域為.19、(1)證明見解析;(2)證明見解析.【解析】(1)由點D、E分別為AB、AC中點得知DE∥BC,由此證得DE∥平面PBC;(2)要證CD⊥平面PAB,只需證明垂直平面內(nèi)的兩條相交直線與即可.【詳解】(1)因為點D、E分別為AB、AC中點,所以DE∥BC又因為DE?平面PBC,BC?平面PBC,所以DE∥平面PBC(2)因為CA=CB,點D為AB中點,所以CD⊥AB因為PA⊥平面ABC,CD?平面ABC,所以PA⊥CD又因為PA∩AB=A,所以CD⊥平面PAB【點睛】本題考查線面平行的證明,線面垂直的證明,屬于基礎(chǔ)題.垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.20、(1)見解析(2)見解析(3)【解析】(1)取的中點,根據(jù)題意易證四邊形為平行四邊形,所以,從而易證結(jié)論;(2)由,可得線面垂直;(3)由二面角的大小為,可得,求出底面直角梯形的面積,進而可得四棱錐的體積.試題解析:(1)取的中點,連接,∵為中點,∴,由已知,∴,∴四邊形為平行四邊形,∴.又平面,平面,∴平面.(2)連接,∵,∴,又,∴又,為中點,∴,∴,∵,∴平面.(3)取的中點,連接.∴,,∵,∴,又,為的中點,∴,故為二面角的平面角.∴,∵平面,∴,由已知,四邊形為直角梯形,∴,∴.點睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.(1)證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論