版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆云南省楚雄州南華縣民中高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知?jiǎng)狱c(diǎn)在直線上,過(guò)點(diǎn)作圓的切線,切點(diǎn)為,則線段的長(zhǎng)度的最小值為()A. B.4C. D.2.焦點(diǎn)在軸的正半軸上,且焦點(diǎn)到準(zhǔn)線的距離為的拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.3.已知點(diǎn)是橢圓上的任意點(diǎn),是橢圓的左焦點(diǎn),是的中點(diǎn),則的周長(zhǎng)為()A. B.C. D.4.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.5.如果向量,,共面,則實(shí)數(shù)的值是()A. B.C. D.6.“”是“直線與圓相切”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.拋物線的焦點(diǎn)到準(zhǔn)線的距離()A.4 B.C.2 D.8.命題“,”的否定是()A., B.,C, D.,9.《萊因德紙草書》是世界上最古老的數(shù)學(xué)著作之一,書中有一道這樣的類似問(wèn)題:把150個(gè)完全相同的面包分給5個(gè)人,使每個(gè)人所得面包數(shù)成等差數(shù)列,且使較大的三份面包數(shù)之和的是較小的兩份之和,則最大的那份面包數(shù)為()A.30 B.40C.50 D.6010.已知函數(shù),若對(duì)任意兩個(gè)不等的正實(shí)數(shù),,都有,則實(shí)數(shù)的最小值為()A. B.C. D.11.曲線上存在兩點(diǎn)A,B到直線到距離等于到的距離,則()A.12 B.13C.14 D.1512.執(zhí)行如圖所示的程序框圖,輸出的s值為()A.8 B.9C.27 D.36二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線上一點(diǎn)到軸的距離是4,則點(diǎn)到該拋物線焦點(diǎn)的距離是___________.14.已知橢圓的右頂點(diǎn)為,為上一點(diǎn),則的最大值為______.15.已知橢圓:的左右焦點(diǎn)分別為,為橢圓上的一點(diǎn),與橢圓交于.若△的內(nèi)切圓與線段在其中點(diǎn)處相切,與切于,則橢圓的離心率為_______16.程大位《算法統(tǒng)宗》里有詩(shī)云“九百九十六斤棉,贈(zèng)分八子做盤纏.次第每人多十七,要將第八數(shù)來(lái)言.務(wù)要分明依次弟,孝和休惹外人傳.”意為:996斤棉花,分別贈(zèng)送給8個(gè)子女做旅費(fèi),從第一個(gè)開始,以后每人依次多17斤,直到第八個(gè)孩子為止.分配時(shí)一定要等級(jí)分明,使孝順子女的美德外傳,則第七個(gè)孩子分得斤數(shù)為___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知為等差數(shù)列,是各項(xiàng)均為正數(shù)的等比數(shù)列的前n項(xiàng)和,,,,在①;②;③.這三個(gè)條件中任選其中一個(gè),補(bǔ)充在上面的橫線上,并完成下面問(wèn)題的解答(如果選擇多個(gè)條件解答,則按選擇的第一個(gè)解答計(jì)分)(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.18.(12分)從①,②,③,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中并作答:已知等差數(shù)列公差大于零,且前n項(xiàng)和為,,______,,求數(shù)列的前n項(xiàng)和.(注:如果選擇多個(gè)條件分別解答,那么按照第一個(gè)解答計(jì)分)19.(12分)如圖,在四棱柱中,側(cè)棱底面,,,,,,,()(1)求證:平面;(2)若直線與平面所成角的正弦值為,求的值;(3)現(xiàn)將與四棱柱形狀和大小完全相同的兩個(gè)四棱柱拼成一個(gè)新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問(wèn)共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫出的解析式.(直接寫出答案,不必說(shuō)明理由)20.(12分)已知命題:,在下面①②中任選一個(gè)作為:,使為真命題,求出實(shí)數(shù)a取值范圍.①關(guān)于x的方程有兩個(gè)不等正根;②.(若選①、選②都給出解答,只按第一個(gè)解答計(jì)分.)21.(12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)為,,且長(zhǎng)軸長(zhǎng)為4.(1)求橢圓的方程;(2)直線與橢圓相交于A,兩點(diǎn),求弦長(zhǎng).22.(10分)已知函數(shù).(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】求出的最小值,由切線長(zhǎng)公式可結(jié)論【詳解】解:由,得最小時(shí),最小,而,所以故選:A.2、A【解析】直接由焦點(diǎn)位置及焦點(diǎn)到準(zhǔn)線的距離寫出標(biāo)準(zhǔn)方程即可.【詳解】由焦點(diǎn)在軸的正半軸上知拋物線開口向上,又焦點(diǎn)到準(zhǔn)線的距離為,故拋物線的標(biāo)準(zhǔn)方程是.故選:A.3、A【解析】設(shè)橢圓另一個(gè)焦點(diǎn)為,連接,利用中位線的性質(zhì)結(jié)合橢圓的定義可求得結(jié)果.【詳解】在橢圓中,,,,如圖,設(shè)橢圓的另一個(gè)焦點(diǎn)為,連接,因?yàn)?、分別為、的中點(diǎn),則,則的周長(zhǎng)為,故選:A.4、C【解析】按照程序框圖的流程進(jìn)行計(jì)算.【詳解】,故輸出S的值為.故選:C5、B【解析】設(shè),由空間向量的坐標(biāo)運(yùn)算可得出方程組,即可解得的值.【詳解】由于向量,,共面,設(shè),可得,解得.故選:B.6、A【解析】根據(jù)題意,結(jié)合直線與圓的位置關(guān)系求出,即可求解.【詳解】根據(jù)題意,由直線與圓相切,知圓心到直線的距離,解得或,因此“”是“直線與圓相切”的充分不必要條件.故選:A.7、A【解析】寫出拋物線的標(biāo)準(zhǔn)方程,即可確定焦點(diǎn)到準(zhǔn)線的距離.【詳解】由題設(shè),拋物線的標(biāo)準(zhǔn)方程為,則,∴焦點(diǎn)到準(zhǔn)線的距離為4.故選:A.8、D【解析】由含量詞命題否定的定義,寫出命題的否定即可【詳解】命題“,”的否定是:,,故選:D.9、C【解析】根據(jù)題意得到遞增等差數(shù)列中,,,從而化成基本量,進(jìn)行計(jì)算,再計(jì)算出,得到答案.【詳解】根據(jù)題意,設(shè)遞增等差數(shù)列,首項(xiàng)為,公差,則所以解得所以最大項(xiàng).故選:C10、B【解析】不妨設(shè),由題意,可得,構(gòu)造函數(shù),則在上單調(diào)遞增,從而有在上恒成立,分離參數(shù)轉(zhuǎn)化為最值即可求解.【詳解】解:由題意,不妨設(shè),因?yàn)閷?duì)任意兩個(gè)不等的正實(shí)數(shù),,都有,所以,即,構(gòu)造函數(shù),則,所以在上單調(diào)遞增,所以在上恒成立,即在上恒成立,當(dāng)時(shí),因?yàn)?,所以,所以,?shí)數(shù)的最小值為.故選:B.11、D【解析】由題可知A,B為半圓C與拋物線的交點(diǎn),利用韋達(dá)定理及拋物線的定義即求.【詳解】由曲線,可得,即,為圓心為,半徑為7半圓,又直線為拋物線的準(zhǔn)線,點(diǎn)為拋物線的焦點(diǎn),依題意可知A,B為半圓C與拋物線的交點(diǎn),由,得,設(shè),則,,∴.故選:D.12、B【解析】執(zhí)行程序框圖,第一次循環(huán),,滿足;第二次循環(huán),,滿足;第三次循環(huán),,不滿足,輸出,故選B.【方法點(diǎn)睛】本題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問(wèn)題時(shí)一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問(wèn)題時(shí)一定要正確控制循環(huán)次數(shù);(5)要注意各個(gè)框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】根據(jù)拋物線的定義知點(diǎn)P到焦點(diǎn)距離等于到準(zhǔn)線的距離即可求解.【詳解】因?yàn)閽佄锞€方程為,所以準(zhǔn)線方程,所以點(diǎn)到準(zhǔn)線的距離為,故點(diǎn)到該拋物線焦點(diǎn)的距離.故答案為:14、【解析】設(shè)出點(diǎn)P的坐標(biāo),利用兩點(diǎn)間距離公式建立函數(shù)關(guān)系,借助二次函數(shù)計(jì)算最值作答.【詳解】橢圓的右頂點(diǎn)為,設(shè)點(diǎn),則,即,且,于是得,因,則當(dāng)時(shí),,所以的最大值為.故答案為:15、【解析】利用橢圓及三角形內(nèi)切圓的性質(zhì)可得、,結(jié)合等邊三角形的性質(zhì)得的大小,在△中應(yīng)用余弦定理得到a、c的齊次式,即可求離心率.【詳解】由題意知:由內(nèi)切圓的性質(zhì)得:,由橢圓的性質(zhì),而,∴,∴由內(nèi)切圓的性質(zhì)得:再由橢圓的性質(zhì),得:,由此,△為等邊三角形,可得,在△中,由余弦定理得:,解得,則,故答案為:.16、167【解析】由題設(shè)知8個(gè)孩子分得斤數(shù)是公差為17的等差數(shù)列,設(shè)第一個(gè)孩子分得斤,應(yīng)用等差數(shù)列前n項(xiàng)和公式求,進(jìn)而由等差數(shù)列通項(xiàng)公式求即可.【詳解】由題意,設(shè)第一個(gè)孩子分得斤,則,所以,可得,故斤.故答案為:167.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)無(wú)論選擇哪個(gè)條件答案均為;(2).【解析】(1)先根據(jù)題設(shè)條件求解,然后根據(jù)選擇的條件求解;(2)先求,然后利用分組求和的方法求解.【小問(wèn)1詳解】設(shè)的公差為,因?yàn)?,;所以,解得,所?選①:設(shè)的公比為,則;由題意得,因?yàn)?,所以,解得或(舍);所?選②:由,當(dāng)時(shí),,因?yàn)?,所以;?dāng)時(shí),,整理得;即是首項(xiàng)和公比均為2的等比數(shù)列,所以.選③:因?yàn)?,,所以,解得;所?【小問(wèn)2詳解】由(1)得;所以.18、;【解析】將條件①②③轉(zhuǎn)化為的形式,列方程組,并求解,寫出的通項(xiàng)公式,從而表示出,利用裂項(xiàng)相消法求和.【詳解】選①:設(shè)等差數(shù)列首項(xiàng)為,公差為,因?yàn)?,,所以,所以,所以,所以選②:設(shè)等差數(shù)列首項(xiàng)為,公差為,因?yàn)椋?,所以,所以,所以,所以選③:設(shè)等差數(shù)列首項(xiàng)為,公差為,因?yàn)?,,所以,所以,所以,所以【點(diǎn)睛】數(shù)列求和的方法技巧(1)倒序相加:用于等差數(shù)列、與二項(xiàng)式系數(shù)、對(duì)稱性相關(guān)聯(lián)的數(shù)列的求和(2)錯(cuò)位相減:用于等差數(shù)列與等比數(shù)列的積數(shù)列的求和(3)分組求和:用于若干個(gè)等差或等比數(shù)列的和或差數(shù)列的求和19、(1)證明見(jiàn)解析(2)(3)【解析】(1)取得中點(diǎn),連接,可證明四邊形是平行四邊形,再利用勾股定理的逆定理可得,即,又側(cè)棱底面,可得,利用線面垂直的判定定理即可證明;(2)通過(guò)建立空間直角坐標(biāo)系,由線面角的向量公式即可得出;(3)由題意可與左右平面,,上或下面,拼接得到方案,新四棱柱共有此4種不同方案.寫出每一方案下的表面積,通過(guò)比較即可得出【詳解】(1)證明:取的中點(diǎn),連接,,,四邊形是平行四邊形,,且,,,,又,側(cè)棱底面,,,平面(2)以為坐標(biāo)原點(diǎn),、、的方向?yàn)檩S的正方向建立空間直角坐標(biāo)系,則,,,,,設(shè)平面的一個(gè)法向量為,則,取,則,設(shè)與平面所成角為,則,解得,故所求(3)由題意可與左右平面,,上或下面,拼接得到方案新四棱柱共有此4種不同方案寫出每一方案下的表面積,通過(guò)比較即可得出【點(diǎn)睛】本題主要考查線面垂直的判定定理的應(yīng)用,利用向量求線面角、柱體的定義應(yīng)用和表面積的求法,意在考查學(xué)生的直觀想象能力,邏輯推理能力,數(shù)學(xué)運(yùn)算能力及化歸與轉(zhuǎn)化能力,屬于中檔題20、答案見(jiàn)解析【解析】根據(jù)題意,分析、為真時(shí)的取值范圍,又由復(fù)合命題真假的判斷方法可得、都是真命題,據(jù)此分析可得答案.【詳解】解:選①時(shí)由知在上恒成立,∴,即又由q:關(guān)于x的方程有兩個(gè)不等正根,知解得,由為真命題知,解得.實(shí)數(shù)a的取值范圍.選②時(shí)由知在上恒成立,∴,即又由,知在上恒成立,∴,又,當(dāng)且僅當(dāng)時(shí)取“=”號(hào),∴,由為真命題知,解得.實(shí)數(shù)a的取值范圍.21、(1)(2)【解析】(1)由已知直接可得;(2)聯(lián)立方程組求出A,兩點(diǎn)坐標(biāo),再由兩點(diǎn)間距離公式可得.【小問(wèn)1詳解】∵橢圓的中心在原點(diǎn),焦點(diǎn)為,且長(zhǎng)軸長(zhǎng)為4,,,,故橢圓的方程為;【小問(wèn)2詳解】設(shè),聯(lián)立解得和,,∴弦長(zhǎng).22、(1)答案見(jiàn)解析(2)【解析】(1)求函數(shù)的定義域及導(dǎo)函數(shù),根據(jù)導(dǎo)數(shù)與函數(shù)的單調(diào)性關(guān)系判斷函數(shù)的單調(diào)性;(2)結(jié)合已知條件,根據(jù)函數(shù)的單調(diào)性,極值結(jié)合零點(diǎn)存在性定理列不等式求實(shí)數(shù)的取值范圍.【小問(wèn)1詳解】的定義域?yàn)?,?dāng)時(shí),恒成立,上單調(diào)遞增,當(dāng)時(shí),在遞減,在遞增【小問(wèn)2詳解】當(dāng)時(shí),恒成立,上單調(diào)遞增,所以至多存一個(gè)零點(diǎn),不符題意,故舍去.當(dāng)時(shí),在遞減,在遞增;所以有極小值為構(gòu)造函數(shù),恒成立,所以在單調(diào)遞減,注意到①當(dāng)時(shí),,則函數(shù)至多只有一個(gè)零點(diǎn),不符題意,舍去.②當(dāng)時(shí),函數(shù)圖象連續(xù)不間斷,的極小值為,又函數(shù)在單調(diào)遞減,所以在上存在唯一一個(gè)零點(diǎn);,令,構(gòu)造函數(shù),恒成立.在單調(diào)遞增,所以,即,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人臨街租賃合同
- 2024年礦山開采土石方運(yùn)輸服務(wù)合同
- 2025消防工程承包合同范本
- 商丘醫(yī)學(xué)高等??茖W(xué)?!缎畔D形設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 商丘醫(yī)學(xué)高等??茖W(xué)?!稊?shù)字化室內(nèi)建筑制圖AutoCAD》2023-2024學(xué)年第一學(xué)期期末試卷
- 商丘醫(yī)學(xué)高等專科學(xué)?!恫牧蠠崃W(xué)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年簡(jiǎn)化版無(wú)子離婚合同參考版B版
- 2024年版聘用協(xié)議編號(hào)及管理規(guī)章版
- 委托生產(chǎn)醫(yī)療設(shè)備合同范例
- 汽車代理授權(quán)合同范例
- 靜脈治療護(hù)理小組職責(zé)
- 第六章《發(fā)展與合作》課件-2024-2025學(xué)年人教版初中地理七年級(jí)上冊(cè)
- 醫(yī)院感染監(jiān)測(cè)規(guī)范
- 四川省住宅設(shè)計(jì)標(biāo)準(zhǔn)
- 中央空調(diào)設(shè)備采購(gòu)及安裝合同
- 2024年山東省青島市中考英語(yǔ)試卷附答案
- 股權(quán)激勵(lì)對(duì)賭協(xié)議范本
- 銀行保安服務(wù) 投標(biāo)方案(技術(shù)標(biāo))
- 食材配送服務(wù)方案投標(biāo)方案(技術(shù)方案)
- 經(jīng)營(yíng)分析培訓(xùn)課件(課件)
- 人教版三年級(jí)數(shù)學(xué)上冊(cè)第十單元《總復(fù)習(xí)》(大單元教學(xué)設(shè)計(jì))
評(píng)論
0/150
提交評(píng)論