吉林省延邊市第二中學2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第1頁
吉林省延邊市第二中學2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第2頁
吉林省延邊市第二中學2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第3頁
吉林省延邊市第二中學2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第4頁
吉林省延邊市第二中學2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

吉林省延邊市第二中學2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設、是兩條不同的直線,、、是三個不同的平面,則下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則2.正三棱錐的側(cè)面都是直角三角形,,分別是,的中點,則與平面所成角的余弦值為()A. B.C. D.3.已知雙曲線的一條漸近線方程為,它的焦距為2,則雙曲線的方程為()A B.C. D.4.記為等差數(shù)列的前項和.若,,則的公差為()A.1 B.2C.4 D.85.已知,,,則最小值是()A.10 B.9C.8 D.76.已知函數(shù),則()A.1 B.2C.3 D.57.已知橢圓的右焦點為,為坐標原點,為軸上一點,點是直線與橢圓的一個交點,且,則橢圓的離心率為()A. B.C. D.8.已知數(shù)列中,,,是的前n項和,則()A. B.C. D.9.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A. B.C. D.10.已知直線:和:,若,則實數(shù)的值為()A. B.3C.-1或3 D.-111.已知向量,,則等于()A. B.C. D.12.已知橢圓上一點到橢圓一個焦點的距離是,則點到另一個焦點的距離為()A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若有兩個零點,則的范圍是______14.若“”是真命題,則實數(shù)的最小值為_____________.15.拋物線的焦點坐標為__________16.在中,,,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.18.(12分)已知直線和的交點為(1)若直線經(jīng)過點且與直線平行,求直線的方程;(2)若直線經(jīng)過點且與兩坐標軸圍成的三角形的面積為,求直線的方程19.(12分)在中,已知,,,,分別為邊,的中點,于點.(1)求直線方程;(2)求直線的方程.20.(12分)已知橢圓上的點到左、右焦點、的距離之和為4,且右頂點A到右焦點的距離為1.(1)求橢圓的方程;(2)直線與橢圓交于不同兩點,,記的面積為,當時求的值.21.(12分)已知等差數(shù)列滿足:,,數(shù)列的前n項和為(1)求及;(2)設是首項為1,公比為3的等比數(shù)列,求數(shù)列的前項和22.(10分)已知命題:“曲線表示焦點在軸上的橢圓”,命題:“曲線表示雙曲線”.(1)若是真命題,求實數(shù)的取值范圍;(2)若是的必要不充分條件,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)線線、線面、面面的位置關系,對選項進行逐一判斷即可.【詳解】選項A.一條直線垂直于一平面內(nèi)的,兩條相交直線,則改直線與平面垂直則由,不能得出,故選項A不正確.選項B.,則正確,故選項B正確.選項C若,則與可能相交,可能異面,也可能平行,故選項C不正確.選項D.若,則與可能相交,可能平行,故選項D不正確.故選:B2、C【解析】以P為原點,PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標系,利用向量法能求出PB與平面PEF所成角的正弦值.【詳解】∵正三棱錐的側(cè)面都是直角三角形,E,F(xiàn)分別是AB,BC的中點,∴以P為原點,PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標系,設,則,,,,,,,,設平面PEF的法向量,則,取,得,設PB與平面PEF所成角為,則,∴PB與平面PEF所成角的正弦值為.故選:C.3、B【解析】根據(jù)雙曲線的一條漸近線方程為,可得,再結(jié)合焦距為2和,求得,即可得解.【詳解】解:因為雙曲線的一條漸近線方程為,所以,即,又因焦距為2,即,即,因為,所以,所以,所以雙曲線的方程為.故選:B.4、C【解析】根據(jù)等差數(shù)列的通項公式及前項和公式利用條件,列出關于與的方程組,通過解方程組求數(shù)列的公差.【詳解】設等差數(shù)列的公差為,則,,聯(lián)立,解得.故選:C.5、B【解析】利用題設中的等式,把的表達式轉(zhuǎn)化成展開后,利用基本不等式求得的最小值【詳解】∵,,,∴=,當且僅當,即時等號成立故選:B6、C【解析】利用導數(shù)的定義,以及運算法則,即可求解.【詳解】,,所以,所以故選:C7、D【解析】設橢圓的左焦點為,由橢圓的對稱性可知,則,所以,即可得到的關系,利用橢圓的定義進而求得離心率.【詳解】設橢圓的左焦點為,連接,因為,所以,如圖所示,所以,設,,則,所以,故選:D.8、D【解析】由,得到為遞增數(shù)列,又由,得到,化簡,即可求解.【詳解】解:由,得,又,所以,所以,即,所以數(shù)列為遞增數(shù)列,所以,得,即,又由是的前項和,則.故選:D.【點睛】關鍵點睛:本題考查數(shù)列求和問題,關鍵在于由已知條件得出,運用裂項相消求和法.9、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設,進而作,得出,由此求出結(jié)果【詳解】因為,所以,即所以,由雙曲線的定義,知,設,則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B10、D【解析】利用兩直線平行列式求出a值,再驗證即可判斷作答.【詳解】因,則,解得或,當時,與重合,不符合題意,當時,,符合題意,所以實數(shù)的值為-1.故選:D11、C【解析】根據(jù)題意,結(jié)合空間向量的坐標運算,即可求解.【詳解】由,,得,因此.故選:C.12、C【解析】根據(jù)橢圓的定義,結(jié)合題意,即可求得結(jié)果.【詳解】設橢圓的兩個焦點分別為,故可得,又到橢圓一個焦點的距離是,故點到另一個焦點的距離為.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導數(shù)求出函數(shù)的最小值,結(jié)合函數(shù)的圖象列式可求出結(jié)果.【詳解】,當時,,在上為增函數(shù),最多只有一個零點,不符合題意;當時,令,得,令,得,所以在上為減函數(shù),在上為增函數(shù),所以在時取得極小值為,也是最小值,因為當趨近于正負無窮時,都是趨近于正無窮,所以要使有兩個零點,只要,即就可以了.所以的范圍是故答案為:.14、1【解析】若“”是真命題,則大于或等于函數(shù)在的最大值因為函數(shù)在上為增函數(shù),所以,函數(shù)在上的最大值為1,所以,,即實數(shù)的最小值為1.所以答案應填:1.考點:1、命題;2、正切函數(shù)的性質(zhì).15、【解析】化成標準形式,結(jié)合焦點定義即可求解.【詳解】由,得,故拋物線的焦點坐標為故答案為:16、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【詳解】解:因為在中,,,,所以由余弦定理可得,所以,即,則故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)得到,再結(jié)合為等比數(shù)列求出首項,進而求得數(shù)列的通項公式;(2)由(1)求得數(shù)列的通項公式,進而利用公式法即可求出【小問1詳解】解:(1),,當時,,即,又,為等比數(shù)列,所以,,數(shù)列的通項公式為【小問2詳解】(2)由(1)知,則,數(shù)列的前項和18、(1)(2)或【解析】(1)由已知可得交點坐標,再根據(jù)直線間的位置關系可得直線方程;(2)設直線方程,根據(jù)直線與兩坐標軸圍成的三角形的面積,列出方程組,解方程.【小問1詳解】解:聯(lián)立的方程,解得,即設直線的方程為:,將帶入可得所以的方程為:;【小問2詳解】解:法①:易知直線在兩坐標軸上的截距均不為,設直線方程為:,則直線與兩坐標軸交點為,由題意得,解得:或所以直線的方程為:或,即:或.法②:設直線的斜率為,則的方程為,當時,當時,所以,解得:或所以m的方程為或即:或.19、(1);(2).【解析】(1)根據(jù)給定條件求出點D,E坐標,再求出直線DE方程作答.(2)求出直線AH的斜率,再借助直線的點斜式方程求解作答.【小問1詳解】在中,,,,則邊中點,邊的中點,直線DE斜率,于是得,即,所以直線的方程是:.【小問2詳解】依題意,,則直線BC的斜率為,又,因此,直線的斜率為,所以直線的方程為:,即.20、(1)(2)【解析】(1)根據(jù)題意得到,,再根據(jù)求解即可.(2)首先設,,再根據(jù)求解即可.【小問1詳解】由題意,,因為右頂點到右焦點的距離為,即,所以,則,所以橢圓的標準方程為.【小問2詳解】設,,且根據(jù)橢圓的對稱性得,聯(lián)立方程組,整理得,解得,因為的面積為3,可得,解得.21、(1);(2)【解析】(1)先根據(jù)已知求出,再求及.(2)先根據(jù)已知得到,再利用分組求和求數(shù)列的前項和.【詳解】(1)設等差數(shù)列的公差為d,因為,,所以,解得,所以;==.(2)由已知得,由(1)知,所以,=.【點睛】(1)本題主要考查等差數(shù)列的通項和前n項和求法,考查分組求和和等比數(shù)列的求和公式,意在考查學生對這些知識的掌握水平和計算推理能力.(2)有一類數(shù)列,它既不是等差數(shù)列,也不是等比數(shù)列,但是數(shù)列是等差數(shù)列或等比數(shù)列或常見特殊數(shù)列,則可以將這類數(shù)列適當拆開,可分為幾個等差、等比數(shù)列或常見的特殊數(shù)列,然后分別求和,再將其合并即可.這叫分組求和法.22、(1);(2).【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論