版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省延邊市第二中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)、是兩條不同的直線,、、是三個不同的平面,則下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則2.正三棱錐的側(cè)面都是直角三角形,,分別是,的中點,則與平面所成角的余弦值為()A. B.C. D.3.已知雙曲線的一條漸近線方程為,它的焦距為2,則雙曲線的方程為()A B.C. D.4.記為等差數(shù)列的前項和.若,,則的公差為()A.1 B.2C.4 D.85.已知,,,則最小值是()A.10 B.9C.8 D.76.已知函數(shù),則()A.1 B.2C.3 D.57.已知橢圓的右焦點為,為坐標(biāo)原點,為軸上一點,點是直線與橢圓的一個交點,且,則橢圓的離心率為()A. B.C. D.8.已知數(shù)列中,,,是的前n項和,則()A. B.C. D.9.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A. B.C. D.10.已知直線:和:,若,則實數(shù)的值為()A. B.3C.-1或3 D.-111.已知向量,,則等于()A. B.C. D.12.已知橢圓上一點到橢圓一個焦點的距離是,則點到另一個焦點的距離為()A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若有兩個零點,則的范圍是______14.若“”是真命題,則實數(shù)的最小值為_____________.15.拋物線的焦點坐標(biāo)為__________16.在中,,,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.18.(12分)已知直線和的交點為(1)若直線經(jīng)過點且與直線平行,求直線的方程;(2)若直線經(jīng)過點且與兩坐標(biāo)軸圍成的三角形的面積為,求直線的方程19.(12分)在中,已知,,,,分別為邊,的中點,于點.(1)求直線方程;(2)求直線的方程.20.(12分)已知橢圓上的點到左、右焦點、的距離之和為4,且右頂點A到右焦點的距離為1.(1)求橢圓的方程;(2)直線與橢圓交于不同兩點,,記的面積為,當(dāng)時求的值.21.(12分)已知等差數(shù)列滿足:,,數(shù)列的前n項和為(1)求及;(2)設(shè)是首項為1,公比為3的等比數(shù)列,求數(shù)列的前項和22.(10分)已知命題:“曲線表示焦點在軸上的橢圓”,命題:“曲線表示雙曲線”.(1)若是真命題,求實數(shù)的取值范圍;(2)若是的必要不充分條件,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)線線、線面、面面的位置關(guān)系,對選項進(jìn)行逐一判斷即可.【詳解】選項A.一條直線垂直于一平面內(nèi)的,兩條相交直線,則改直線與平面垂直則由,不能得出,故選項A不正確.選項B.,則正確,故選項B正確.選項C若,則與可能相交,可能異面,也可能平行,故選項C不正確.選項D.若,則與可能相交,可能平行,故選項D不正確.故選:B2、C【解析】以P為原點,PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,利用向量法能求出PB與平面PEF所成角的正弦值.【詳解】∵正三棱錐的側(cè)面都是直角三角形,E,F(xiàn)分別是AB,BC的中點,∴以P為原點,PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面PEF的法向量,則,取,得,設(shè)PB與平面PEF所成角為,則,∴PB與平面PEF所成角的正弦值為.故選:C.3、B【解析】根據(jù)雙曲線的一條漸近線方程為,可得,再結(jié)合焦距為2和,求得,即可得解.【詳解】解:因為雙曲線的一條漸近線方程為,所以,即,又因焦距為2,即,即,因為,所以,所以,所以雙曲線的方程為.故選:B.4、C【解析】根據(jù)等差數(shù)列的通項公式及前項和公式利用條件,列出關(guān)于與的方程組,通過解方程組求數(shù)列的公差.【詳解】設(shè)等差數(shù)列的公差為,則,,聯(lián)立,解得.故選:C.5、B【解析】利用題設(shè)中的等式,把的表達(dá)式轉(zhuǎn)化成展開后,利用基本不等式求得的最小值【詳解】∵,,,∴=,當(dāng)且僅當(dāng),即時等號成立故選:B6、C【解析】利用導(dǎo)數(shù)的定義,以及運算法則,即可求解.【詳解】,,所以,所以故選:C7、D【解析】設(shè)橢圓的左焦點為,由橢圓的對稱性可知,則,所以,即可得到的關(guān)系,利用橢圓的定義進(jìn)而求得離心率.【詳解】設(shè)橢圓的左焦點為,連接,因為,所以,如圖所示,所以,設(shè),,則,所以,故選:D.8、D【解析】由,得到為遞增數(shù)列,又由,得到,化簡,即可求解.【詳解】解:由,得,又,所以,所以,即,所以數(shù)列為遞增數(shù)列,所以,得,即,又由是的前項和,則.故選:D.【點睛】關(guān)鍵點睛:本題考查數(shù)列求和問題,關(guān)鍵在于由已知條件得出,運用裂項相消求和法.9、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設(shè),進(jìn)而作,得出,由此求出結(jié)果【詳解】因為,所以,即所以,由雙曲線的定義,知,設(shè),則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B10、D【解析】利用兩直線平行列式求出a值,再驗證即可判斷作答.【詳解】因,則,解得或,當(dāng)時,與重合,不符合題意,當(dāng)時,,符合題意,所以實數(shù)的值為-1.故選:D11、C【解析】根據(jù)題意,結(jié)合空間向量的坐標(biāo)運算,即可求解.【詳解】由,,得,因此.故選:C.12、C【解析】根據(jù)橢圓的定義,結(jié)合題意,即可求得結(jié)果.【詳解】設(shè)橢圓的兩個焦點分別為,故可得,又到橢圓一個焦點的距離是,故點到另一個焦點的距離為.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導(dǎo)數(shù)求出函數(shù)的最小值,結(jié)合函數(shù)的圖象列式可求出結(jié)果.【詳解】,當(dāng)時,,在上為增函數(shù),最多只有一個零點,不符合題意;當(dāng)時,令,得,令,得,所以在上為減函數(shù),在上為增函數(shù),所以在時取得極小值為,也是最小值,因為當(dāng)趨近于正負(fù)無窮時,都是趨近于正無窮,所以要使有兩個零點,只要,即就可以了.所以的范圍是故答案為:.14、1【解析】若“”是真命題,則大于或等于函數(shù)在的最大值因為函數(shù)在上為增函數(shù),所以,函數(shù)在上的最大值為1,所以,,即實數(shù)的最小值為1.所以答案應(yīng)填:1.考點:1、命題;2、正切函數(shù)的性質(zhì).15、【解析】化成標(biāo)準(zhǔn)形式,結(jié)合焦點定義即可求解.【詳解】由,得,故拋物線的焦點坐標(biāo)為故答案為:16、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【詳解】解:因為在中,,,,所以由余弦定理可得,所以,即,則故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)得到,再結(jié)合為等比數(shù)列求出首項,進(jìn)而求得數(shù)列的通項公式;(2)由(1)求得數(shù)列的通項公式,進(jìn)而利用公式法即可求出【小問1詳解】解:(1),,當(dāng)時,,即,又,為等比數(shù)列,所以,,數(shù)列的通項公式為【小問2詳解】(2)由(1)知,則,數(shù)列的前項和18、(1)(2)或【解析】(1)由已知可得交點坐標(biāo),再根據(jù)直線間的位置關(guān)系可得直線方程;(2)設(shè)直線方程,根據(jù)直線與兩坐標(biāo)軸圍成的三角形的面積,列出方程組,解方程.【小問1詳解】解:聯(lián)立的方程,解得,即設(shè)直線的方程為:,將帶入可得所以的方程為:;【小問2詳解】解:法①:易知直線在兩坐標(biāo)軸上的截距均不為,設(shè)直線方程為:,則直線與兩坐標(biāo)軸交點為,由題意得,解得:或所以直線的方程為:或,即:或.法②:設(shè)直線的斜率為,則的方程為,當(dāng)時,當(dāng)時,所以,解得:或所以m的方程為或即:或.19、(1);(2).【解析】(1)根據(jù)給定條件求出點D,E坐標(biāo),再求出直線DE方程作答.(2)求出直線AH的斜率,再借助直線的點斜式方程求解作答.【小問1詳解】在中,,,,則邊中點,邊的中點,直線DE斜率,于是得,即,所以直線的方程是:.【小問2詳解】依題意,,則直線BC的斜率為,又,因此,直線的斜率為,所以直線的方程為:,即.20、(1)(2)【解析】(1)根據(jù)題意得到,,再根據(jù)求解即可.(2)首先設(shè),,再根據(jù)求解即可.【小問1詳解】由題意,,因為右頂點到右焦點的距離為,即,所以,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè),,且根據(jù)橢圓的對稱性得,聯(lián)立方程組,整理得,解得,因為的面積為3,可得,解得.21、(1);(2)【解析】(1)先根據(jù)已知求出,再求及.(2)先根據(jù)已知得到,再利用分組求和求數(shù)列的前項和.【詳解】(1)設(shè)等差數(shù)列的公差為d,因為,,所以,解得,所以;==.(2)由已知得,由(1)知,所以,=.【點睛】(1)本題主要考查等差數(shù)列的通項和前n項和求法,考查分組求和和等比數(shù)列的求和公式,意在考查學(xué)生對這些知識的掌握水平和計算推理能力.(2)有一類數(shù)列,它既不是等差數(shù)列,也不是等比數(shù)列,但是數(shù)列是等差數(shù)列或等比數(shù)列或常見特殊數(shù)列,則可以將這類數(shù)列適當(dāng)拆開,可分為幾個等差、等比數(shù)列或常見的特殊數(shù)列,然后分別求和,再將其合并即可.這叫分組求和法.22、(1);(2).【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)延遲優(yōu)化-洞察分析
- 虛擬偶像慶典應(yīng)用-洞察分析
- 寫保護(hù)動物的演講稿(5篇)
- 《大數(shù)據(jù)存儲技術(shù)與應(yīng)用》 課件 項目三-任務(wù)五 淺析對象存儲系統(tǒng)
- 維護(hù)服務(wù)環(huán)境標(biāo)準(zhǔn)制定-洞察分析
- 《人與動物的關(guān)系》課件
- 企業(yè)安全用電共筑綠色發(fā)展未來
- 產(chǎn)品設(shè)計中的創(chuàng)意激發(fā)與實現(xiàn)技巧
- 創(chuàng)新思維的跨領(lǐng)域應(yīng)用與拓展
- 從傳統(tǒng)到數(shù)字化現(xiàn)代企業(yè)實驗室管理與安全規(guī)范探索研究
- 家庭年度盤點模板
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試 數(shù)學(xué) 含答案
- 2024年資格考試-WSET二級認(rèn)證考試近5年真題集錦(頻考類試題)帶答案
- 部編版五年級上冊道德與法治期末測試卷含答案精練
- 統(tǒng)編版(2024年新版)七年級上冊歷史期末復(fù)習(xí)課件
- 無線傳感器網(wǎng)絡(luò)技術(shù)與應(yīng)用 第2版習(xí)題答案
- 2024年度中國主要城市共享單車、電單車騎行報告-中規(guī)院+中規(guī)智庫
- 2024-2025學(xué)年高中體育 羽毛球正手發(fā)、擊高遠(yuǎn)球教學(xué)設(shè)計
- 危險化學(xué)品企業(yè)安全操作規(guī)程編制規(guī)范
- 遺傳學(xué)(云南大學(xué))智慧樹知到答案2024年云南大學(xué)
- 2024高校大學(xué)《輔導(dǎo)員》招聘考試題庫(含答案)
評論
0/150
提交評論