2025屆云南省玉溪市第二中學高三數(shù)學第一學期期末考試模擬試題含解析_第1頁
2025屆云南省玉溪市第二中學高三數(shù)學第一學期期末考試模擬試題含解析_第2頁
2025屆云南省玉溪市第二中學高三數(shù)學第一學期期末考試模擬試題含解析_第3頁
2025屆云南省玉溪市第二中學高三數(shù)學第一學期期末考試模擬試題含解析_第4頁
2025屆云南省玉溪市第二中學高三數(shù)學第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆云南省玉溪市第二中學高三數(shù)學第一學期期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個單位長度后得到的圖象關(guān)于軸對稱;③若在上恰有7個零點,則的取值范圍為;④若在上單調(diào)遞增,則的取值范圍為.其中,判斷正確的個數(shù)為()A.1 B.2 C.3 D.42.已知復(fù)數(shù)滿足,則()A. B. C. D.3.當輸入的實數(shù)時,執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.4.已知函數(shù),下列結(jié)論不正確的是()A.的圖像關(guān)于點中心對稱 B.既是奇函數(shù),又是周期函數(shù)C.的圖像關(guān)于直線對稱 D.的最大值是5.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.6.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.7.定義在上的函數(shù)與其導(dǎo)函數(shù)的圖象如圖所示,設(shè)為坐標原點,、、、四點的橫坐標依次為、、、,則函數(shù)的單調(diào)遞減區(qū)間是()A. B. C. D.8.正方形的邊長為,是正方形內(nèi)部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.9.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]10.已知向量,,則與的夾角為()A. B. C. D.11.設(shè)過拋物線上任意一點(異于原點)的直線與拋物線交于兩點,直線與拋物線的另一個交點為,則()A. B. C. D.12.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果函數(shù)(,且,)在區(qū)間上單調(diào)遞減,那么的最大值為__________.14.某市公租房源位于、、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,則該市的任意位申請人中,恰好有人申請小區(qū)房源的概率是______.(用數(shù)字作答)15.已知(且)有最小值,且最小值不小于1,則的取值范圍為__________.16.已知,(,),則=_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(選修4-4:坐標系與參數(shù)方程)在平面直角坐標系,已知曲線(為參數(shù)),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.18.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.19.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面;(2)求幾何體的體積.20.(12分)已知橢圓的離心率為,直線過橢圓的右焦點,過的直線交橢圓于兩點(均異于左、右頂點).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點.若直線交于點,直線交于點,試判斷是否為定值,若是,求出定值;若不是,說明理由.21.(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+)=1.(1)求直線l的直角坐標方程和曲線C的普通方程;(2)已知點M(2,0),若直線l與曲線C相交于P、Q兩點,求的值.22.(10分)如圖,在四棱錐中,底面為直角梯形,,,,,,點、分別為,的中點,且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

對函數(shù)化簡可得,進而結(jié)合三角函數(shù)的最值、周期性、單調(diào)性、零點、對稱性及平移變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于①,因為,所以,即,故①錯誤;對于②,函數(shù)的圖象向右平移個單位長度后得到的函數(shù)為,其圖象關(guān)于軸對稱,則,解得,故對任意整數(shù),,所以②錯誤;對于③,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故③正確;對于④,因為,且,所以,解得,又,所以,故④正確.故選:B.【點睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調(diào)性、零點、對稱性,考查學生的計算求解能力與推理能力,屬于中檔題.2、A【解析】

由復(fù)數(shù)的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復(fù)數(shù)的運算.屬于簡單題.3、A【解析】

根據(jù)循環(huán)結(jié)構(gòu)的運行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結(jié)論.【詳解】程序框圖共運行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果、幾何概型的概率,模擬程序運行是解題的關(guān)鍵,屬于基礎(chǔ)題.4、D【解析】

通過三角函數(shù)的對稱性以及周期性,函數(shù)的最值判斷選項的正誤即可得到結(jié)果.【詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D:,令,則,,,,則時,或時,即在上單調(diào)遞增,在和上單調(diào)遞減;且,,,故D錯誤.故選:.【點睛】本題考查三角函數(shù)周期性和對稱性的判斷,利用導(dǎo)數(shù)判斷函數(shù)最值,屬于中檔題.5、D【解析】

根據(jù)三視圖判斷出幾何體為正四棱錐,由此計算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計算,屬于基礎(chǔ)題.6、C【解析】

根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運算求解的能力,屬于中檔題.7、B【解析】

先辨別出圖象中實線部分為函數(shù)的圖象,虛線部分為其導(dǎo)函數(shù)的圖象,求出函數(shù)的導(dǎo)數(shù)為,由,得出,只需在圖中找出滿足不等式對應(yīng)的的取值范圍即可.【詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個極值點,但其導(dǎo)函數(shù)圖象(實線)與軸有三個交點,不合乎題意;若實線部分為函數(shù)的圖象,則該函數(shù)有兩個極值點,則其導(dǎo)函數(shù)圖象(虛線)與軸恰好也只有兩個交點,合乎題意.對函數(shù)求導(dǎo)得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:B.【點睛】本題考查利用圖象求函數(shù)的單調(diào)區(qū)間,同時也考查了利用圖象辨別函數(shù)與其導(dǎo)函數(shù)的圖象,考查推理能力,屬于中等題.8、C【解析】

分別以直線為軸,直線為軸建立平面直角坐標系,設(shè),根據(jù),可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標系.設(shè),,,則,,由,即,得.所以=,所以當時,的最小值為.故選:C.【點睛】本題考查向量的數(shù)量積的坐標表示,屬于基礎(chǔ)題.9、D【解析】

由題意作出可行域,轉(zhuǎn)化目標函數(shù)為連接點和可行域內(nèi)的點的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【詳解】由題意作出可行域,如圖,目標函數(shù)可表示連接點和可行域內(nèi)的點的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點睛】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.10、B【解析】

由已知向量的坐標,利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設(shè)與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.11、C【解析】

畫出圖形,將三角形面積比轉(zhuǎn)為線段長度比,進而轉(zhuǎn)為坐標的表達式。寫出直線方程,再聯(lián)立方程組,求得交點坐標,最后代入坐標,求得三角形面積比.【詳解】作圖,設(shè)與的夾角為,則中邊上的高與中邊上的高之比為,,設(shè),則直線,即,與聯(lián)立,解得,從而得到面積比為.故選:【點睛】解決本題主要在于將面積比轉(zhuǎn)化為線段長的比例關(guān)系,進而聯(lián)立方程組求解,是一道不錯的綜合題.12、B【解析】設(shè)折成的四棱錐的底面邊長為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】

根據(jù)函數(shù)單調(diào)性的性質(zhì),分一次函數(shù)和一元二次函數(shù)的對稱性和單調(diào)區(qū)間的關(guān)系建立不等式,利用基本不等式求解即可.【詳解】解:①當時,,在區(qū)間上單調(diào)遞減,則,即,則.②當時,,函數(shù)開口向上,對稱軸為,因為在區(qū)間上單調(diào)遞減,則,因為,則,整理得,又因為,則.所以即,所以當且僅當時等號成立.綜上所述,的最大值為18.故答案為:18【點睛】本題主要考查一次函數(shù)與二次函數(shù)的單調(diào)性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.14、【解析】

基本事件總數(shù),恰好有2人申請小區(qū)房源包含的基本事件個數(shù),由此能求出該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率.【詳解】解:某市公租房源位于、、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,該市的任意5位申請人中,基本事件總數(shù),該市的任意5位申請人中,恰好有2人申請小區(qū)房源包含的基本事件個數(shù):,該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率是.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.15、【解析】

真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點睛】本題考查對數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.16、【解析】

先利用倍角公式及差角公式把已知條件化簡可得,平方可得.【詳解】∵,∴,則,平方可得.故答案為:.【點睛】本題主要考查三角恒等變換,倍角公式的合理選擇是求解的關(guān)鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)曲線:,直線的直角坐標方程;(2)1.【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線化為普通方程,再根據(jù)將直線的極坐標方程化為直角坐標方程;(2)根據(jù)題意設(shè)直線參數(shù)方程,代入C方程,利用參數(shù)幾何意義以及韋達定理得點到,的距離之積試題解析:(1)曲線化為普通方程為:,由,得,所以直線的直角坐標方程為.(2)直線的參數(shù)方程為(為參數(shù)),代入化簡得:,設(shè)兩點所對應(yīng)的參數(shù)分別為,則,.18、(1)(2)證明見解析(3)證明見解析【解析】

(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導(dǎo)出,,由此能證明的“極差數(shù)列”仍是.(3)證當數(shù)列是等差數(shù)列時,設(shè)其公差為,,是一個單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【詳解】(1)解:∵無窮數(shù)列的前項中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當數(shù)列是等差數(shù)列時,設(shè)其公差為,,根據(jù),的定義,得:,,且兩個不等式中至少有一個取等號,當時,必有,∴,∴是一個單調(diào)遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當時,則必有,∴,∴是一個單調(diào)遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當時,,∵,中必有一個為0,根據(jù)上式,一個為0,為一個必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【點睛】本小題主要考查新定義數(shù)列的理解和運用,考查等差數(shù)列的證明,考查數(shù)列的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.19、(1)見解析;(2)【解析】

(1)由題可知,根據(jù)三角形的中位線的性質(zhì),得出,根據(jù)矩形的性質(zhì)得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據(jù)面面垂直的性質(zhì),得出平面,從而得出到平面的距離為,結(jié)合棱錐的體積公式,即可求得結(jié)果.【詳解】解:(1)∵,分別為,的中點,∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點,,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因為四邊形是矩形,,,,設(shè)幾何體的體積為,則,∴,即:.【點睛】本題考查線面平行的判定、面面垂直的性質(zhì)和棱錐的體積公式,考查邏輯推理和計算能力.20、(1)(2)定值為0.【解析】

(1)根據(jù)直線方程求焦點坐標,即得c,再根據(jù)離心率得,(2)先設(shè)直線方程以及各點坐標,化簡,再聯(lián)立直線方程與橢圓方程,利用韋達定理代入化簡得結(jié)果.【詳解】(1)因為直線過橢圓的右焦點,所以,因為離心率為,所以,(2),設(shè)直線,則因此由得,所以,因此即【點睛】本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論