版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省德陽中學(xué)2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若的解集是,則等于()A.-14 B.-6C.6 D.142.已知直線,,點(diǎn)是拋物線上一點(diǎn),則點(diǎn)到直線和的距離之和的最小值為()A.2 B.C.3 D.3.若拋物線與直線:相交于兩點(diǎn),則弦的長為()A.6 B.8C. D.4.下列語句為命題的是()A. B.你們好!C.下雨了嗎? D.對頂角相等5.“”是“直線和直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知遞增等比數(shù)列的前n項和為,,且,則與的關(guān)系是()A. B.C. D.7.如圖,在四面體中,,,,分別為,,,的中點(diǎn),則化簡的結(jié)果為()A. B.C. D.8.已知公差為的等差數(shù)列滿足,則()A B.C. D.9.已知球O的半徑為2,球心到平面的距離為1,則球O被平面截得的截面面積為()A. B.C. D.10.若,都為正實(shí)數(shù),,則的最大值是()A. B.C. D.11.已知空間向量,,,下列命題中正確的個數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對任意一個空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個基底.A.0 B.1C.2 D.312.已知拋物線的焦點(diǎn)為F,過F作斜率為2的直線l與拋物線交于A,B兩點(diǎn),若弦的中點(diǎn)到拋物線準(zhǔn)線的距離為3,則拋物線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.半徑為R的圓外接于,且,若,則面積的最大值為________.14.已知直線與直線平行,則直線,之間的距離為__________.15.滕王閣,江南三大名樓之一,因初唐詩人王勃所作《滕王閣序》中的“落霞與孤鶩齊飛,秋水共長天一色”而名傳千古,流芳后世.如圖,在滕王閣旁地面上共線的三點(diǎn),,處測得閣頂端點(diǎn)的仰角分別為,,.且米,則滕王閣高度___________米.16.已知數(shù)列滿足,則其通項公式________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程(1)焦點(diǎn)在x軸上,實(shí)軸長為4,實(shí)半軸長是虛半軸長的2倍;(2)焦點(diǎn)在y軸上,漸近線方程為,焦距長為18.(12分)已知點(diǎn),橢圓:的離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).設(shè)過點(diǎn)的動直線與相交于,兩點(diǎn)(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請說明理由19.(12分)已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2,離心率為(1)求橢圓C的方程;(2)設(shè)直線l經(jīng)過點(diǎn)M(0,1),且與橢圓C交于A,B兩點(diǎn),若,求直線l的方程20.(12分)在△ABC中,角A,B,C所對的邊分別a,b,c.已知2bcosB=ccosA+acosC(1)求B;(2)若a=2,,設(shè)D為CB延長線上一點(diǎn),且AD⊥AC,求線段BD的長21.(12分)設(shè)函數(shù)(I)求曲線在點(diǎn)處的切線方程;(II)設(shè),若函數(shù)有三個不同零點(diǎn),求c的取值范圍22.(10分)在平面直角坐標(biāo)系中,動點(diǎn)到直線的距離與到點(diǎn)的距離之差為.(1)求動點(diǎn)的軌跡的方程;(2)過點(diǎn)的直線與交于、兩點(diǎn),若的面積為,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由一元二次不等式的解集,結(jié)合根與系數(shù)關(guān)系求參數(shù)a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.2、C【解析】由拋物線的定義可知點(diǎn)到直線和的距離之和的最小值即為焦點(diǎn)到直線的距離.【詳解】解:由題意,拋物線的焦點(diǎn)為,準(zhǔn)線為,所以根據(jù)拋物線的定義可得點(diǎn)到直線的距離等于,所以點(diǎn)到直線和的距離之和的最小值即為焦點(diǎn)到直線的距離,故選:C.3、B【解析】由題得拋物線的焦點(diǎn)坐標(biāo)為剛好在直線上,再聯(lián)立直線和拋物線的方程,利用韋達(dá)定理和拋物線的定義求解.【詳解】解:由題得.由題得拋物線的焦點(diǎn)坐標(biāo)為剛好在直線上,設(shè),聯(lián)立直線和拋物線方程得,所以.所以.故選:B4、D【解析】根據(jù)命題的定義判斷即可.【詳解】因為能夠判斷真假的語句叫作命題,所以ABC錯誤,D正確.故選:D5、A【解析】因為直線和直線垂直,所以或,再根據(jù)充分必要條件的定義判斷得解.【詳解】因為“直線和直線垂直,所以或.當(dāng)時,直線和直線垂直;當(dāng)直線和直線垂直時,不一定成立.所以是直線和直線垂直的充分不必要條件,故選:A6、D【解析】設(shè)等比數(shù)列的公比為,由已知列式求得,再由等比數(shù)列的通項公式與前項和求解.【詳解】設(shè)等比數(shù)列的公比為,由,得,所以,又,所以,所以,,所以即故選:D7、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C8、C【解析】根據(jù)等差數(shù)列前n項和,即可得到答案.【詳解】∵數(shù)列是公差為的等差數(shù)列,∴,∴.故選:C9、B【解析】根據(jù)球的性質(zhì)可求出截面圓的半徑即可求解.【詳解】由球的性質(zhì)可知,截面圓的半徑為,所以截面的面積.故選:B10、B【解析】由基本不等式,結(jié)合題中條件,直接求解,即可得出結(jié)果.【詳解】因為,都為正實(shí)數(shù),,所以,當(dāng)且僅當(dāng),即時,取最大值.故選:D11、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯誤;若非零向量共面,則向量可以在一個與組成的平面平行的平面上,故②錯誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個基底,故④錯誤;故選:C.12、B【解析】設(shè)出直線,并與拋物線聯(lián)立,得到,再根據(jù)拋物線的定義建立等式即可求解.【詳解】因為直線l的方程為,即,由消去y,得,設(shè),則,又因為弦的中點(diǎn)到拋物線的準(zhǔn)線的距離為3,所以,而,所以,故,解得,所以拋物線的方程為故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用正弦定理將已知條件轉(zhuǎn)化為邊之間的關(guān)系,然后用余弦定理求得C;利用三角形面積公式,結(jié)合兩角差的正弦函數(shù)公式和二倍角公式得,再利用輔助角公式得,最后利用函數(shù)的值域計算得結(jié)論.【詳解】因為所以由正弦定理得:,即,所以由余弦定理可得:,又,故.由正弦定理得:,,所以,所以當(dāng)時,S最大,.若,則面積的最大值為.故答案為:.【點(diǎn)睛】本題考查了兩角和與差的三角函數(shù)公式,二倍角公式及應(yīng)用,正弦定理,余弦定理,三角形面積公式,函數(shù)的圖象與性質(zhì),屬于中檔題.14、【解析】利用直線平行與斜率之間的關(guān)系、點(diǎn)到直線的距離公式即可得出【詳解】解:因為直線與直線平行,所以,解得,當(dāng)時,,,則故答案為:【點(diǎn)睛】熟練運(yùn)用直線平行與斜率之間的關(guān)系、點(diǎn)到直線的距離公式,是解題關(guān)鍵15、【解析】設(shè),由邊角關(guān)系可得,,,在和中,利用余弦定理列方程,結(jié)合可解得的值,進(jìn)而可得長.【詳解】設(shè),因為,,,所以,,,.在中,,即①.,在中,,即②,因為,所以①②兩式相加可得:,解得:,則,故答案為:.16、【解析】利用累加法即可求出數(shù)列的通項公式.【詳解】因為,所以,所以,,,…,,把以上個式子相加,得,即,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)(2)直接由條件解出即可得到雙曲線方程.【小問1詳解】由題意有,解得:,則雙曲線的標(biāo)準(zhǔn)方程為:【小問2詳解】由題意有,解得:,則雙曲線的標(biāo)準(zhǔn)方程為:18、(1);(2)存在;或.【解析】(1)設(shè),由,,,求得的值即可得橢圓的方程;(2)設(shè),,直線的方程為與橢圓方程聯(lián)立可得,,進(jìn)而可得弦長,求出點(diǎn)到直線的距離,解方程,求得的值即可求解.【小問1詳解】設(shè),因為直線的斜率為,,所以,可得,又因為,所以,所以,所以橢圓的方程為【小問2詳解】假設(shè)存在直線,使得的面積為,當(dāng)軸時,不合題意,設(shè),,直線的方程為,聯(lián)立消去得:,由可得或,,,所以,點(diǎn)到直線的距離,所以,整理可得:即,所以或,所以或,所以存在直線:或使得的面積為.19、(1);(2)或【解析】(1)根據(jù)橢圓的焦距為2,離心率為,求出,,即可求橢圓的方程;(2)設(shè)直線方程為,代入橢圓方程,由得,利用韋達(dá)定理,化簡可得,求出,即可求直線的方程.試題解析:(1)設(shè)橢圓方程為,因為,所以,所求橢圓方程為.(2)由題得直線l的斜率存在,設(shè)直線l方程為y=kx+1,則由得,且.設(shè),則由得,又,所以消去得,解得,,所以直線的方程為,即或.20、(1)(2)【解析】(1)利用正弦定理化簡已知條件,求得,由此求得.(2)利用正弦定理求得,由列方程來求得.【小問1詳解】,由正弦定理得,因為,所以,.【小問2詳解】由(1)知,,由正弦定理:得,,或(舍去),,,所以由得,,21、(1)(2)【解析】(1)由導(dǎo)數(shù)幾何意義得切線斜率為,再根據(jù)點(diǎn)斜式寫切線方程;(2)由函數(shù)圖像可知,極大值大于零且極小值小于零,解不等式可得c的取值范圍試題解析:解:(I)由,得因為,,所以曲線在點(diǎn)處的切線方程為(II)當(dāng)時,,所以令,得,解得或與在區(qū)間上的情況如下:所以,當(dāng)且時,存在,,,使得由的單調(diào)性知,當(dāng)且僅當(dāng)時,函數(shù)有三個不同零點(diǎn)22、(1);(2)或.【解析】(1)本題首先可以設(shè)動點(diǎn),然后根據(jù)題意得出,通過化簡即可得出結(jié)果;(2)本題首先可排除直線斜率不存在時情況,然后設(shè)直線方程為,通過聯(lián)立方程并化簡得出,則,,再然后根據(jù)得出,最后根據(jù)的面積為即可得出結(jié)果.【詳解】(1)設(shè)動點(diǎn),因為動點(diǎn)到直線的距離與到點(diǎn)的距離之差為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度瓦工裝修綠色施工認(rèn)證合同3篇
- 二零二五版?;饭愤\(yùn)輸安全監(jiān)管服務(wù)合同2篇
- 二零二五版攪拌站輪胎專用備品備件供應(yīng)合同3篇
- 二零二五版智能辦公樓深度清潔及保養(yǎng)服務(wù)合同2篇
- 二零二五版辦公室文員工作環(huán)境優(yōu)化合同3篇
- 二零二五年度高端房地產(chǎn)項目個人連帶責(zé)任保證擔(dān)保合同2篇
- 二零二五年度互聯(lián)網(wǎng)數(shù)據(jù)中心(IDC)設(shè)施租賃合同3篇
- 2025年度中式烹飪技藝傳承與創(chuàng)新合同協(xié)議3篇
- 屋頂防水施工合同(2篇)
- 二零二五年救生員水上安全培訓(xùn)與勞動合同3篇
- 廣東省惠州市2024-2025學(xué)年高一上學(xué)期期末考試英語試題(含答案)
- 醫(yī)院骨科2025年帶教計劃(2篇)
- 環(huán)境保護(hù)應(yīng)急管理制度執(zhí)行細(xì)則
- 2024-2030年中國通航飛行服務(wù)站(FSS)行業(yè)發(fā)展模式規(guī)劃分析報告
- 機(jī)械制造企業(yè)風(fēng)險分級管控手冊
- 地系梁工程施工方案
- 藏文基礎(chǔ)-教你輕輕松松學(xué)藏語(西藏大學(xué))知到智慧樹章節(jié)答案
- 2024電子商務(wù)平臺用戶隱私保護(hù)協(xié)議3篇
- 安徽省蕪湖市2023-2024學(xué)年高一上學(xué)期期末考試 英語 含答案
- 醫(yī)學(xué)教程 常見體表腫瘤與腫塊課件
- 內(nèi)分泌系統(tǒng)異常與虛勞病關(guān)系
評論
0/150
提交評論