西藏林芝市第二中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第1頁
西藏林芝市第二中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第2頁
西藏林芝市第二中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第3頁
西藏林芝市第二中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第4頁
西藏林芝市第二中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

西藏林芝市第二中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的周長等于10,,通過建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,頂點的軌跡方程可以是()A. B.C. D.2.已知雙曲線的右焦點為F,則點F到其一條漸近線的距離為()A.1 B.2C.3 D.43.已知三維數(shù)組,,且,則實數(shù)()A.-2 B.-9C. D.24.設(shè)函數(shù),當(dāng)自變量t由2變到2.5時,函數(shù)的平均變化率是()A.5.25 B.10.5C.5.5 D.115.若點,在拋物線上,是坐標(biāo)原點,若等邊三角形的面積為,則該拋物線的方程是()A. B.C. D.6.在數(shù)列中,,則的值為()A. B.C. D.以上都不對7.命題“對任意,都有”的否定是()A.對任意,都有 B.存在,使得C.對任意,都有 D.存在,使得8.設(shè)是可導(dǎo)函數(shù),當(dāng),則()A.2 B.C. D.9.若函數(shù)在區(qū)間內(nèi)存在單調(diào)遞增區(qū)間,則實數(shù)的取值范圍是()A. B.C. D.10.過點作圓的切線,則切線的方程為()A. B.C.或 D.或11.已知數(shù)列滿足,,在()A.25 B.30C.32 D.6412.如圖,一個圓錐形的空杯子上面放著一個半徑為4.5cm的半球形的冰淇淋,若冰淇淋融化后正好盛滿杯子,則杯子的高()A.9cm B.6cmC.3cm D.4.5cm二、填空題:本題共4小題,每小題5分,共20分。13.若命題“,使得”為假命題,則實數(shù)a的取值范圍是___________14.在平面直角坐標(biāo)系中,直線與的交點為,以為圓心作圓,圓上的點到軸的最小距離為(Ⅰ)求圓的標(biāo)準(zhǔn)方程;(Ⅱ)過點作圓的切線,求切線的方程15.已知平面和兩條不同的直線,則下列判斷中正確的序號是___________.①若,則;②若,則;③若,則;④若,則;16.函數(shù)定義域為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,直線與橢圓C相切于點(1)求橢圓C的方程;(2)已知直線與橢圓C交于不同的兩點M,N,與直線交于點Q(P,Q,M,N均不重合),記的斜率分別為,若.證明:為定值18.(12分)如圖,在四棱錐中,底面是正方形,側(cè)面底面,為側(cè)棱上一點(1)求證:;(2)若為中點,平面與側(cè)棱于點,且,求四棱錐的體積19.(12分)已知關(guān)于x的不等式,.(1)若,求不等式的解集;(2)若不等式的解集為R,求k的取值范圍.20.(12分)已知數(shù)列為正項等比數(shù)列,滿足,,數(shù)列滿足(1)求數(shù)列,的通項公式;(2)若數(shù)列的前n項和為,數(shù)列滿足,證明:數(shù)列的前n項和21.(12分)在直三棱柱中,,,,,分別是,上的點,且(1)求證:∥平面;(2)求平面與平面所成銳二面角的余弦值22.(10分)已知橢圓的左、右焦點分別為,若焦距為4,點P是橢圓上與左、右頂點不重合的點,且的面積最大值.(1)求橢圓的方程;(2)過點的直線交橢圓于點、,且滿足(為坐標(biāo)原點),求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)橢圓的定義進(jìn)行求解即可.【詳解】因為的周長等于10,,所以,因此點的軌跡是以為焦點的橢圓,且不在直線上,因此有,所以頂點的軌跡方程可以是,故選:A2、A【解析】由雙曲線方程可寫出右焦點坐標(biāo),再寫一漸近線方程,根據(jù)點到直線的距離公式可得答案.【詳解】雙曲線的右焦點F坐標(biāo)為,根據(jù)雙曲線的對稱性,不妨取一條漸近線為,故點F到漸近線的距離為,故選:A3、D【解析】由空間向量的數(shù)量積運算即可求解【詳解】∵,,,,,,且,∴,解得故選:D4、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.5、A【解析】根據(jù)等邊三角形的面積求得邊長,根據(jù)角度求得點的坐標(biāo),代入拋物線方程求得的值.【詳解】設(shè)等邊三角形的邊長為,則,解得根據(jù)拋物線的對稱性可知,且,設(shè)點在軸上方,則點的坐標(biāo)為,即,將代入拋物線方程得,解得,故拋物線方程為故選:A6、C【解析】由數(shù)列的遞推公式可先求數(shù)列的前幾項,從而發(fā)現(xiàn)數(shù)列的周期性的特點,進(jìn)而可求.【詳解】解:,數(shù)列是以3為周期的數(shù)列故選:【點睛】本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的項,解題的關(guān)鍵是由遞推關(guān)系發(fā)現(xiàn)數(shù)列的周期性的特點,屬于基礎(chǔ)題.7、B【解析】根據(jù)全稱命題的否定是特稱命題形式,可判斷正確答案.【詳解】因為全稱命題的否定是特稱命題,所以命題“對任意,都有”的否定是“存在,使得”故選:B.8、C【解析】由導(dǎo)數(shù)的定義可得,即可得答案【詳解】根據(jù)題意,,故.故選:C9、D【解析】求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為在有解,進(jìn)而求函數(shù)的最值,即可求出的范圍.【詳解】∵,∴,若在區(qū)間內(nèi)存在單調(diào)遞增區(qū)間,則有解,故,令,則在單調(diào)遞增,,故.故選:D.10、C【解析】設(shè)切線的方程為,然后利用圓心到直線的距離等于半徑建立方程求解即可.【詳解】圓的圓心為原點,半徑為1,當(dāng)切線的斜率不存在時,即直線的方程為,不與圓相切,當(dāng)切線的斜率存在時,設(shè)切線的方程為,即所以,解得或所以切線的方程為或故選:C11、A【解析】根據(jù)題中條件,得出數(shù)列公差,進(jìn)而可求出結(jié)果.【詳解】由得,所以數(shù)列是以為公差的等差數(shù)列,又,所以.故選:A.【點睛】本題主要考查等差數(shù)列的基本量運算,屬于基礎(chǔ)題型.12、A【解析】根據(jù)圓錐和球的體積公式以及半球的體積等于圓錐的體積,即可列式解出【詳解】由題意可得,,解得.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、(-1,0]【解析】將題意的命題轉(zhuǎn)化條件為“,”為真命題,結(jié)合一元二次不等式恒成立即可得解.【詳解】因為命題“,使得”是假命題,所以其否定“,”為真命題,即在R上恒成立.當(dāng)時,不等式為,符合題意;當(dāng)時,則需滿足,解得;綜上,實數(shù)的取值范圍為.故答案為:.14、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出點的坐標(biāo),設(shè)圓的半徑為,圓上的點到軸的最小距離為1求得的值,由此可得出圓的標(biāo)準(zhǔn)方程;(Ⅱ)對切線的斜率是否存在進(jìn)行分類討論,當(dāng)切線的斜率不存在時,可得切線方程為,驗證即可;當(dāng)切線的斜率存在時,可設(shè)所求切線的方程為,利用圓心到切線的距離等于圓的半徑可求得的值,綜合可得出所求切線的方程.【詳解】(Ⅰ)聯(lián)立方程組,解得,即點設(shè)圓的半徑為,由于圓上的點到軸的最小距離為,則,所以,故圓的標(biāo)準(zhǔn)方程為;(Ⅱ)若切線的斜率不存在,則所求切線的方程為,圓心到直線的距離為,不合乎題意;若切線的斜率存在,可設(shè)切線的方程為,即,圓的圓心坐標(biāo)為,半徑為,由題意可得,整理得,解得或故所求切線方程為或【點睛】本題考查圓的標(biāo)準(zhǔn)方程的求解,同時也考查了過圓外一點的圓的切線方程的求解,考查計算能力,屬于中等題.15、②④【解析】根據(jù)直線與直線,直線與平面的位置關(guān)系依次判斷每個選項得到答案.詳解】若,則或,異面,或,相交,①錯誤;若,則,②正確;若,則或或與相交,③錯誤;若,則,④正確;故答案為:②④.16、【解析】根據(jù)函數(shù)定義域的求法,即可求解.【詳解】解:,解得,故函數(shù)的定義域為:.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)根據(jù)橢圓離心率和橢圓經(jīng)過的點建立方程組,求解方程組可得橢圓的方程;(2)先根據(jù)相切求出直線的斜率,結(jié)合可得,再逐個求解,,然后可證結(jié)論.【小問1詳解】解:由題意,解得故橢圓C的方程為.【小問2詳解】證明:設(shè)直線的方程為,聯(lián)立得,因為直線與橢圓C相切,所以判別式,即,整理得,所以,故直線的方程為,因為,所以,設(shè)直線的方程為,聯(lián)立方程組解得故點Q坐標(biāo)為,聯(lián)立方程組,化簡得設(shè)點因為判別式,得又,所以故,于是為定值.【點睛】直線與橢圓的相切問題一般是聯(lián)立方程,結(jié)合判別式為零求解;定值問題的求解一般結(jié)合目標(biāo)式中的項,逐個求解,代入驗證即可.18、(1)證明見解析(2)【解析】(1)利用面面垂直的性質(zhì)定理可得出平面,再利用線面垂直的性質(zhì)可得出;(2)分析可知為的中點,平面,計算出梯形的面積,利用錐體的體積公式可求得四棱錐的體積【小問1詳解】證明:因為四邊形為正方形,則,因為側(cè)面底面,平面平面,平面,所以平面,又平面,所以.【小問2詳解】解:因為,平面,平面,所以,平面,因為平面,平面平面,所以,所以,,則,所以,四邊形是直角梯形,又是中點,所以,,所以,由平面,平面,所以,從而,正三角形中,是中點,,即,,所以平面,因為,所以.19、(1)(2)【解析】(1)因式分解后可求不等式的解集.(2)就分類討論后可得的取值范圍.【小問1詳解】時,原不等式即為,其解為.【小問2詳解】不等式的解集為R,當(dāng)時,則有,解得,綜上,.20、(1),(2)證明見解析【解析】(1)將已知條件用首項和公比表示,聯(lián)立方程組即可求解數(shù)列的通項公式,然后由對數(shù)的運算性質(zhì)即可得數(shù)列的通項公式;(2)由(1)求出,然后利用裂項相消求和法求出數(shù)列的前n項和,即可證明.【小問1詳解】解:設(shè)等比數(shù)列的公比為,由題意,得,即,解得或(舍),又,所以,所以,;【小問2詳解】解:,所以,所以21、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,由空間向量證明與平面的法向量垂直(2)由空間向量求解【小問1詳解】以C為原點,分別為軸建立空間直角坐標(biāo)系,如圖,則,,,,,,設(shè),因為,所以,故,得,同理求得,所以,因為是平面的一個法向量,且,所以,又平面,所以平面;【小問2詳解】由(1)可得:,,設(shè)平面的一個法向量為,則,即令,則,所以,又平面的一個法向量為,設(shè)表示平面與平面所成銳二面角,則22、(1)(2)或【解析】(1)根據(jù)焦距求出,利用面積最大值,得到求出,從而得到,求出橢圓方程;(2)分直線斜率存在和斜率不存在,結(jié)合題干

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論