版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第二章
平面介質(zhì)光波導(dǎo)和耦合模理論集成光電子器件及設(shè)計(jì)2Outline
1.
Background
2.
Coupling
mode
theory
Equations
and
solutions
Codirectional
coupling;
Contradirectional
coupling;
3.
Coupling
to
excite
the
modes
in
optical
waveguides31.
Background:
mode
coupling
定義:波導(dǎo)中由于某種原因產(chǎn)生的由一種模式向另外一種模式的轉(zhuǎn)
換,或多個(gè)波導(dǎo)組成的系統(tǒng)中,其中一個(gè)波導(dǎo)傳輸?shù)哪J较蛄硗獠▽?dǎo)
的轉(zhuǎn)移;
實(shí)質(zhì):模式的能量變換;
例子4光場在單根波導(dǎo)中的傳播
理想情況:
波導(dǎo)沒有缺陷
折射率分布均勻、規(guī)則;
沿波導(dǎo)保持光場形狀無改變傳播
實(shí)際情況:
制作波導(dǎo)的材料存在損耗,
光場沿傳播方向振幅呈指數(shù)衰減;5方向耦合器波導(dǎo)中傳輸?shù)膶?dǎo)模在芯層外的倏逝場由于相互作用產(chǎn)生耦合,引起波導(dǎo)間模式功率的相互轉(zhuǎn)移。Input
Section
Output
Section
1
2
34A0
A
Coupling
region
BB0sD
模式耦合6Surface
coupling:
Prism
coupler,
grating
coupler.
模式耦合
同向耦合:方向耦合器、Y分支、MZI反向耦合:Bragg
grating72.
Coupled
mode
theory
2.
1
Equations
Codirectional
coupler
(directional
coupler);
Contradirectional
coupler
(Grating);
2.
2
Coupling
to
excite
the
modes
in
optical
waveguides8
Coupled
mode
theoryThe
eigenmodes
(Ep,
and
Hp)
in
waveguide
#1,
and
#2
before
mode
coupling
satisfy
Maxwell’s
equations:
Refractive
index
profile
N(x,y)For
a
weakly
coupled
system,
the
field
(E,
H)
could
be
written
as
the
sum
of
eigen‐modes
in
waveguide
#1
and
#2,
i.e.,
function
of
znI2nII2Waveguide
IIWaveguide
Iyxn0209Maxwell
Equ.
for
the
coupling
systemnI2nII2Waveguide
IIWaveguide
Ixn020uzdAdz?A(z)
=N
is
the
refractive
index
profile
for
the
whole
coupling
system
y1011With
,
one
has
where12The
mode
coupling
coefficient
of
a
directional
coupler.The
butt
coupling
coefficient
between
the
two
waveguides.χp<<κpq,
thus
usually
could
be
neglected.
13
The
difference
of
the
propagation
constant
between
waveguide
I
and
II:
Using
Equ.
(4‐11)
–
(4.12)
*c12exp(-j2δz)=0,Using
Equ.
(4‐12)
–
(4.11)
*c21exp(j2δz)=0,
Codirectional
coupler:
β1>0,
β2>0
Contradirectional
coupler:
β1>0,
β2<014Assume
cpq=0,
χp=0
(p,
q=1,
2).Codirectional
coupler:
β1>0,
β2>0,
the
solution
is15Initial
condition:
A(z=0),
B(z=0),
which
is
corresponding
to
the
launched
field.
16Usually,
A(z=0)=A0,
B(z=0)=0,
i.e.,
light
is
input
to
waveguide
I
only.
Power
flow
along
the
z‐direction
is
given
by
F
denotes
the
maximum
power‐
coupling
efficiency,
given
byδ=0,
F=1.0δ=2κ,
F=0.2Coupling
length,
z(m=0)Position
for
maximum
coupling
Powersplitterbychoosingthelength
L17For
the
case
when
there
is
a
loss0P
a(z)
=
P
sin2[Kz]exp(?2αz)b
0
P
(z)
=
P
cos2[Kz]exp(?2αz)when
there
is
a
loss?
?With
material
absorption
(e.g.,
metal);
?With
bending
leakage;
?With
substrate
leakage;18How
to
have
δ≠0?
δ≠0β1≠β2β
~
the
width
w,
the
height
h,
the
indices:
n1,
n2WG
IWG
IIOne
of
the
parameters
for
the
two
coupled
waveguide
different
β1≠β2
for
the
fundamental
modes
in
them
δ≠0
(asymmetrical
coupler)A
directional
coupler
might
not
work
due
to
β1≠β2
caused
by
the
fabrication
error.Different
bending
radii
β1≠β219Several
example
for
asymmetrical
couplersExample.
1:
Straight
DC
Design
parameters
for
the
optical
waveguides:
hrib=320nm,
wrib=0.95μm,
wgap=0.9μm;
Issue:
we
can
not
observe
the
coupling
in
the
fabricated
DC
structures
(the
coupling
length
varies
from
0
to
2000μm).
Reason?
het
HCladding
wco
Core
BuffernclnconbfCross
sectionTop
view
20S=1.858um,
wco1=0.95um,
wco1=0.95um
(Δw=0nm),
Lc=1250um;
neff=3.263857645725755TE21S=1.858um,
wco1=0.95um,
wco1=0.945um
(Δw=5nm),
Lc=1250um;
neff=3.263228568956343Δneff=6.29e-004
(when
Δw=5nm)δ=Δneffk0/2=0.00255μm-1κ=0.5π/Lc=0.0013μm-1TE22Example.
2
Bent
directional
coupler
(R1
≠
R2)R1R2
w1
wg
w2
R1
≠
R2If
we
choosing
different
widths,
the
bent
DC
could
be
symmetrical.TETMPBS
based
on
asymmetrical
DCDaoxin
Dai,
and
John
E
Bowers,
“Novel
ultra‐short
and
ultra‐broadband
polarization
beam
splitter
based
on
a
bent
directionalcoupler,”
Opt.
Express,
19(19):
18614‐18620
(2011)
TMTESiO2SiTE/TMwghcoSiO2w1
Siw2
SiTE~0.02~0.97R=20μm
S-bendL<10umTM~0.983<0.00124Optical
switch:
δ=0δ>>κApplication
of
using
the
asymmetrical
coupler
Control
the
state:
δ=0
or
δ
≠
0Derivation
of
coupling
coefficients
(Method
1)
Coupling
for
slab
waveguidesFor
TE
polarization,
one
hasN2‐N22≠0
in
waveguide
I
only
(|x|<a).
(|x|<a)
2526Example
1.
For
slab
waveguides
with
2a=6μm,
?=0.3%,
v=1.5,
separation
D=4a,
the
coupling
coefficient
=0.39mm‐1,
the
coupling
length
Lc=4mm.
Using
the
eigen
value
equation,
finally
one
has
The
formula
for
calculating
the
coupling
coefficient
of
a
slab‐waveguide
coupler.Core
ICore
II++Derivation
of
coupling
coefficients
(Method
2)
Based
on
mode
interference
Ein=Eo(x)+Ee(x)odd
evenevenodd2728Derivation
of
coupling
coefficients
(Method
3)
Based
on
numerical
simulation
method:
BPMGet
the
coupling
length
from
the
light
propagation.Be
able
to
deal
with
a
complicated
case/structure.29DC
#1DC
#2arms
More
applications
of
directional
couplers
(I)Mach‐Zehnder
Interferometer
(MZI):
switcher,
modulator,
filter,
optical
sensor,
PBS,
etc.
3dB
coupler:
κl=π/430An
MZI’s
response31Connecting
an
output
port
with
one
input
port
of
an
DC.
More
applications
of
directional
couplers
(II)Ring
resonator:
switcher,
modulator,
filter,
optical
sensor,
PBS,
etc.
32More
forms
of
resonators?
(0)E1'
=
k2'1'
0()E2'
(0)k2'1'
=
exp(?
jφ2'1')φ2'1'
=
βl2'1'E1k2'1'
0()k12'
(0)=
k12'
(0)
+βl2'1'
=
mλ33The
resonator’s
responseGeneral
formula
11′22′l4′1′l23′k2′1′(0
(
1'2'
((
(0
(
(2
(?E20)
=
k12)E10)
+k1'0)E1'0)?E2'
=
k12')E10)
+k0()E1'0)?
(0)?2'1'
1'2'1'2'
2'1'
(0(('2'1'
1'2'(2'1'
1'2'(2
2'1'
(0(0((E1'0)
(0)E20)E10)E20)E10)1?
k0()k0()
k0()k0()k12')
1?
k0()k0()=k1'0)k0()k12')1?
k0()k0()=
k12)
+0
0
0
00Resonance
wavelgnth34The
resonator’s
response
Key
features:
FSR
(free
spectral
response).
3dB‐bandwidth,
Q
factor
=
λ/BW3dB.
Resonance
wavelengths.
?
(0)E1'
=
k2'1'
0()E2'
(0)E1=
k12
(0)
+k2'1'
0()k12'
(0)=
k12'
(0)
+=?
?∏k1'2'
?
?γ
tol
exp(?
jΦtol)=
E
?
?k1'2
∏k1'2'
?
?γ
n
exp(?
jΦn)??(0
(
1'2'
((
(0
(
(2
(?E20)
=
k12)E10)
+k1'0)E1'0)?E2'
=
k12')E10)
+k0()E1'0)?
(0)?2'1'
1'2'1'2'
2'1'
(0(('2'1'
1'2'(2'1'
1'2'(2
2'1'
(0((E20)E10)E1'0)
(0)E20)E10)=
k1'0)k0()k12')
1?
k0()k0()1?
k0()k0()
k0()k0()k12')
1?
k0()k0()1′2′2′#N
1′1′
#1
1′
1
#0#n
2′
2
The
resonator’s
response
Ring
resonator
with
N
output
ports.
Through
port
2
1
Input
port
1
2output
port
#1
output
port
#N
2′
2
1output
port
#n
(0)2'1'k?
N
(n)??
n=1
?Daoxin
Dai
and
Sailing
He.
Proposal
of
a
coupled‐microring‐based
wavelength‐selective
1×N
352'(n)2E(0)?
(n)
n?1
(m)?
m=1Power36
10.50
00.40.20.40.215401550
00.40.2
0
1530Wavelength
(nm)(a)(b)(c)(d)
1560(a)
the
through
port;
(b)
output
port
#1;
(c)
output
port
#2;
(d)
output
port
#3.
121′2′#01′12′2#1121′2′#N1′21#n
2′Input
portThrough
portoutput
port
#1output
port
#noutput
port
#NRing
resonator
with
N
output
ports,
N=3371×N
Wavelength‐selective
Power
Splitter
(By
D.
T.
Spencer,
Daoxin
Dai,
Y.
Tang,
M.
J.
R.
Heck,
and
John
E.
Bowers)38Contradirectional
coupling
in
corrugated
waveguides
(波形波導(dǎo)
)
Consider
a
coupler
where
the
index
is
perturbed
periodically
between
waveguide
I
and
II
(β1>0,
β2<0).
Assume
κ12(z)=κGexp(‐j(2π/Λ)z),
Λ
is
the
a
period
of
perturbation.
Waveguide
I
κ(z)
Waveguide
II
z=0A(z=0)=0
z=LB(z=L)=039Phase‐matching
condition
factorThe
coupling
equation
κ12(z)=κGexp(‐j(2π/Λ)z)The
same
as
that
in
Page
154041Bragg
optical
waveguideIn
this
case,
waveguide
I
and
II
are
the
same,
i.e.,
β1=‐β2=kneff,
The
phase
matching
condition42Eq.
(4.50)ρL=πκGL=2αL=2κGL=2forwardbackwordforwardbackwordWavelength
dependence
of
the
transmission
Pass
band
43|φ|>
κG
Stop
bandThe
transmission
&
reflection|φ|>
κG
|φ|=044κGL=2
Reflection
Transmission
Bragg
wavelength|φ|=0
Frequency/wavelength
dependent:45(4.60)‐(4.62)T=1‐RR=tanh2(κGL)
@
the
Bragg
frequency
ωB
E.g.,
R=0.93
when
κGL=2.
Gratings
with
various
index
profile20.
A.
Inoue,
et
al.
optimization
of
fiber
Bragg
grating
for
dens
WDM
transmission
system.
IEICE
Trans.
46How
to
fabricate
a
grating?Planar
optical
waveguidesfibers
47
λ2np
sinθΛ=Two‐beam
interference
method
for
fiber
grating
雙光束干涉UV
light:
krF
excimer
laser
(248nm),
SHG
Ar
laser
(244nm)
Change
the
index
of
the
Ge‐doped
fiber
core.
4849fiberTwo‐beam
interference
method
for
fiber
grating:
IPeriodically
index
profile50Two‐beam
interference
method
for
fiber
grating:
IIPlanar
optical
waveguide:
standard
micro/nano‐fabircationE‐beam
/
deep
UV
lithography:
form
patterns
on
photoresist.Dry
etching:
transfer
the
patterns
from
photoresist
to
the
dielectric
film.
5152Grating
Coupler
between
fibers
and
chips53Grating
coupler
&
PBSBOX
TE
TM
TETMFiber
core
(a)54The
coupling
system55The
application
for
grating?
Filter.
Coupler.
PBS.
Reflector
(laser).
Sensor
(stress,
temperature,
refractive
index).
Etc.
563.
Coupling
to
excite
the
modes
in
optical
waveguidesSurface
coupling:
prism
coupler,
grating
couplerTransverse
coupling:
end‐fire
coupling,
butt‐couplingIncit
be57Schematic
configuration
for
prism
couplingαPrism
npθdena
θ’mncβn0n1n2SnP
sinθ2π
λ01.
The
matching
condition:
βv
=
βP
=2.
折射率:
np>n1>n2>n03.
θ
>θc4.
Gap
width
S<λ/2.
Change
the
incident
angle,
light
could
be
coupled
to
different
guided‐modes.匹配液:水、甘油、二碘甲烷Coupling
in/out
with
prismsPrismPrismMatching
liquidWaveguidePhotodetectorSliding
<激光通過棱鏡和薄膜之間的空氣層被耦合進(jìn)波導(dǎo)層。在耦合的某個(gè)角度,可以看到波導(dǎo)產(chǎn)生的模點(diǎn)。當(dāng)從棱鏡里面看到衍射光時(shí),在這些耦合的角度,可以發(fā)現(xiàn)光強(qiáng)突然變?nèi)?,在光斑的中間有個(gè)垂直的黑線。通過測試所有的模點(diǎn),就能夠算出膜層的折射率和厚度了。為了得到這些值,膜層厚度需要足夠大,至少在波導(dǎo)上出現(xiàn)兩個(gè)模點(diǎn)。通過調(diào)整激光的直角偏振,就可以算出膜層的尋常光和非尋常光。
5859Prism
coupler
1波導(dǎo)損耗的測量
2薄膜及波導(dǎo)折射率/厚度測量
3體材料折射率的測量
4薄膜及體材料的雙折射測量
5液體折射率的測量
*
Precision:
±0.0005
(even
0.0001‐0.0002)
*
Thickness:
±(0.5%+50?)
*
Range
n:
1.0~3.35
60The
(dis)advantages????效率高可以通過改變?nèi)肷浣羌?lì)不同的導(dǎo)波模式可以測量平板波導(dǎo),也可以測量條形波導(dǎo)可以通過調(diào)整間隙實(shí)現(xiàn)最大耦合強(qiáng)度對材料要求高(折射率,吸收)入射光必須高度對準(zhǔn)震動(dòng)和溫度變化會(huì)引起不穩(wěn)定性61Grating
coupler在平面介質(zhì)光波導(dǎo)上直接制作光柵利用光柵替代棱鏡和間隙介質(zhì)可以是正弦、三角周期性結(jié)構(gòu)βv
=
β0
+(v
=
0,±1,±2,...)v2π
Λk0sinθi
=βv
無光柵時(shí)導(dǎo)波模傳播常數(shù)光柵周期62The
(dis)advantages?????不受光波導(dǎo)材料折射率大小限制可以選擇導(dǎo)波模式任一種進(jìn)行激勵(lì)與波導(dǎo)集成后,耦合效率不會(huì)因外界環(huán)境變化而變化調(diào)整光束的入射不需要很高精度可以激勵(lì)寬度非常大的波導(dǎo)不能耦合發(fā)散光束偏振相關(guān)性?Very
useful
for
the
coupling
between
silicon
nanowire
and
fiber;?Useful
for
wafer‐scale
test.
63Transverse
Coupling
(橫向耦合
)光纖‐平面光波導(dǎo)平面光波導(dǎo)‐平面光波導(dǎo)半導(dǎo)體激光器‐平面光波導(dǎo)
聚焦耦合(end‐fire)
對接耦合(butt‐coupling)64The
facet
should
be
polished
for
higher
coupling
efficiency.Gaussian
beam
(W)Gaussian
beam
(w)End‐fire
(聚焦耦合方法)
Facet
of
the
optical
waveguideDevices
under
test
(DUT)Light
sourcePolarizerMultimode
fiber65The
setup
for
end‐fire
coupling
Splitter
Camera
(monitoring
the
mode
profile)OSA66The
setup
for
the
end‐fire
coupling
system1234568767Butt‐coupling
systemVertical
direction
(μm)Vertical
direction
(μm)68Coupling
coefficient標(biāo)準(zhǔn)光纖和波導(dǎo)在端面耦合時(shí)模式失配損耗是插入損耗的主要因素;利用光纖和波導(dǎo)模場的重疊積分可以得到兩者耦合時(shí)的損耗;改變波導(dǎo)的幾何尺寸,從而改變波導(dǎo)的模場分布,可以使波導(dǎo)的模場和光纖的模場達(dá)到較好的耦合。=∫∫Er(x,y)
?Enor*y)dxdyf
(x,f
f
(x,
∫∫Er(x,y)
?Enor*y)dx
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《海岸風(fēng)光模板》課件
- 水準(zhǔn)測量外業(yè)工作要點(diǎn)
- 贛南醫(yī)學(xué)院《生物化學(xué)與分子生物學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 勞動(dòng)防護(hù)用品培訓(xùn)課件
- 身體解剖培訓(xùn)課件
- 2022年上海統(tǒng)計(jì)師(中級)《統(tǒng)計(jì)基礎(chǔ)理論及相關(guān)知識》考試題庫及答案
- 甘孜職業(yè)學(xué)院《園林工程實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 三年級數(shù)學(xué)上冊1時(shí)分秒單元概述和課時(shí)安排素材新人教版
- 三年級數(shù)學(xué)上冊第三單元測量第4課時(shí)千米的認(rèn)識教案新人教版
- 小學(xué)生校園安全教育制度
- 公共關(guān)系理論與實(shí)務(wù)教程 課件 項(xiàng)目九-公共關(guān)系危機(jī)管理
- 椎間孔鏡治療腰椎間盤突出
- 2024年融媒體中心事業(yè)單位考試招考142人500題大全加解析答案
- 2024-2025學(xué)年 語文二年級上冊統(tǒng)編版期末測試卷(含答案)
- 期末測試題二(含答案)2024-2025學(xué)年譯林版七年級英語上冊
- 大創(chuàng)賽項(xiàng)目書
- 產(chǎn)品質(zhì)量知識培訓(xùn)課件
- 乳腺旋切手術(shù)
- 醫(yī)護(hù)禮儀課件教學(xué)課件
- 2024-2030年中國商品混凝土行業(yè)產(chǎn)量預(yù)測分析投資戰(zhàn)略規(guī)劃研究報(bào)告
- 2023年中國奧特萊斯行業(yè)白皮書
評論
0/150
提交評論