浙江省寧波市江北區(qū)2023-2024學年中考數(shù)學押題卷含解析_第1頁
浙江省寧波市江北區(qū)2023-2024學年中考數(shù)學押題卷含解析_第2頁
浙江省寧波市江北區(qū)2023-2024學年中考數(shù)學押題卷含解析_第3頁
浙江省寧波市江北區(qū)2023-2024學年中考數(shù)學押題卷含解析_第4頁
浙江省寧波市江北區(qū)2023-2024學年中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省寧波市江北區(qū)2023-2024學年中考數(shù)學押題卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.肥皂泡的泡壁厚度大約是0.00000071米,數(shù)字0.00000071用科學記數(shù)法表示為()A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣82.下列運算正確的是()A.a(chǎn)3?a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a43.如圖,在△ABC中,D、E分別是邊AB、AC的中點,若BC=6,則DE的長為()A.2 B.3 C.4 D.64.長春市奧林匹克公園即將于2018年年底建成,它的總投資額約為2500000000元,2500000000這個數(shù)用科學記數(shù)法表示為()A.0.25×1010B.2.5×1010C.2.5×109D.25×1085.如圖,若AB∥CD,則α、β、γ之間的關系為()A.α+β+γ=360° B.α﹣β+γ=180°C.α+β﹣γ=180° D.α+β+γ=180°6.分式方程的解為()A.x=-2 B.x=-3 C.x=2 D.x=37.如圖,四邊形ABCD是⊙O的內接四邊形,⊙O的半徑為6,∠ADC=60°,則劣弧AC的長為()A.2π B.4π C.5π D.6π8.下列各數(shù):π,sin30°,﹣,其中無理數(shù)的個數(shù)是()A.1個 B.2個 C.3個 D.4個9.如圖所示的幾何體的左視圖是()A. B. C. D.10.如圖,從圓外一點引圓的兩條切線,,切點分別為,,如果,,那么弦AB的長是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知點P(1,2)關于x軸的對稱點為P′,且P′在直線y=kx+3上,把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為.12.如圖,A、D是⊙O上的兩個點,BC是直徑,若∠D=40°,則∠OAC=____度.13.如圖,四邊形ABCD是菱形,☉O經(jīng)過點A,C,D,與BC相交于點E,連接AC,AE,若∠D=78°,則∠EAC=________°.14.比較大?。?_________(填<,>或=).15.七巧板是我們祖先的一項創(chuàng)造,被譽為“東方魔板”,如圖所示是一副七巧板,若已知S△BIC=1,據(jù)七巧板制作過程的認識,求出平行四邊形EFGH_____.16.分解因式:(x2﹣2x)2﹣(2x﹣x2)=______.17.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC其中正確的是_____(填序號)三、解答題(共7小題,滿分69分)18.(10分)如圖,的直角頂點P在第四象限,頂點A、B分別落在反比例函數(shù)圖象的兩支上,且軸于點C,軸于點D,AB分別與x軸,y軸相交于點F和已知點B的坐標為.填空:______;證明:;當四邊形ABCD的面積和的面積相等時,求點P的坐標.19.(5分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=(1)求a,k的值及點B的坐標;(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標.20.(8分)如圖,在△ABC中,AB=AC,點,在邊上,.求證:.21.(10分)如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).22.(10分)某保健品廠每天生產(chǎn)A,B兩種品牌的保健品共600瓶,A,B兩種產(chǎn)品每瓶的成本和利潤如表,設每天生產(chǎn)A產(chǎn)品x瓶,生產(chǎn)這兩種產(chǎn)品每天共獲利y元.(1)請求出y關于x的函數(shù)關系式;(2)如果該廠每天至少投入成本26400元,那么每天至少獲利多少元?(3)該廠每天生產(chǎn)的A,B兩種產(chǎn)品被某經(jīng)銷商全部訂購,廠家對A產(chǎn)品進行讓利,每瓶利潤降低元,廠家如何生產(chǎn)可使每天獲利最大?最大利潤是多少?AB成本(元/瓶)5035利潤(元/瓶)201523.(12分)吳京同學根據(jù)學習函數(shù)的經(jīng)驗,對一個新函數(shù)y=的圖象和性質進行了如下探究,請幫他把探究過程補充完整該函數(shù)的自變量x的取值范圍是.列表:x…﹣2﹣10123456…y…m﹣1﹣5n﹣1…表中m=,n=.描點、連線在下面的格點圖中,建立適當?shù)钠矫嬷苯亲鴺讼祒Oy中,描出上表中各對對應值為坐標的點(其中x為橫坐標,y為縱坐標),并根據(jù)描出的點畫出該函數(shù)的圖象:觀察所畫出的函數(shù)圖象,寫出該函數(shù)的兩條性質:①;②.24.(14分)解方程式:-3=

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】0.00000071的小數(shù)點向或移動7位得到7.1,所以0.00000071用科學記數(shù)法表示為7.1×10﹣7,故選C.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.2、D【解析】

各項計算得到結果,即可作出判斷.【詳解】A、原式=a5,不符合題意;B、原式=x9,不符合題意;C、原式=2x5,不符合題意;D、原式=-a4,符合題意,故選D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.3、B【解析】

根據(jù)三角形的中位線等于第三邊的一半進行計算即可.【詳解】∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=6,∴DE=12故選B.【點睛】本題考查了三角形的中位線定理,中位線是三角形中的一條重要線段,由于它的性質與線段的中點及平行線緊密相連,因此,它在幾何圖形的計算及證明中有著廣泛的應用.4、C【解析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于10時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).【詳解】2500000000的小數(shù)點向左移動9位得到2.5,所以2500000000用科學記數(shù)表示為:2.5×1.故選C.【點睛】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、C【解析】

過點E作EF∥AB,如圖,易得CD∥EF,然后根據(jù)平行線的性質可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,進一步即得結論.【詳解】解:過點E作EF∥AB,如圖,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故選:C.【點睛】本題考查了平行公理的推論和平行線的性質,屬于??碱}型,作EF∥AB、熟練掌握平行線的性質是解題的關鍵.6、B【解析】解:去分母得:2x=x﹣3,解得:x=﹣3,經(jīng)檢驗x=﹣3是分式方程的解.故選B.7、B【解析】

連接OA、OC,然后根據(jù)圓周角定理求得∠AOC的度數(shù),最后根據(jù)弧長公式求解.【詳解】連接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,則劣弧AC的長為:=4π.故選B.【點睛】本題考查了弧長的計算以及圓周角定理,解答本題的關鍵是掌握弧長公式.8、B【解析】

根據(jù)無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有π的數(shù),找出無理數(shù)的個數(shù)即可.【詳解】sin30°=,=3,故無理數(shù)有π,-,故選:B.【點睛】本題考查了無理數(shù)的知識,解答本題的關鍵是掌握無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有π的數(shù).9、A【解析】本題考查的是三視圖.左視圖可以看到圖形的排和每排上最多有幾層.所以選擇A.10、C【解析】

先利用切線長定理得到,再利用可判斷為等邊三角形,然后根據(jù)等邊三角形的性質求解.【詳解】解:,PB為的切線,,,為等邊三角形,.故選C.【點睛】本題考查切線長定理,掌握切線長定理是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、y=﹣1x+1.【解析】

由對稱得到P′(1,﹣2),再代入解析式得到k的值,再根據(jù)平移得到新解析式.【詳解】∵點P(1,2)關于x軸的對稱點為P′,∴P′(1,﹣2),∵P′在直線y=kx+3上,∴﹣2=k+3,解得:k=﹣1,則y=﹣1x+3,∴把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為:y=﹣1x+1.故答案為y=﹣1x+1.考點:一次函數(shù)圖象與幾何變換.12、50【解析】

根據(jù)BC是直徑得出∠B=∠D=40°,∠BAC=90°,再根據(jù)半徑相等所對應的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC【詳解】∵BC是直徑,∠D=40°,∴∠B=∠D=40°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=40°,∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.故答案為:50【點睛】本題考查了圓的基本概念、角的概念及其計算等腰三角形以及三角形的基本概念,熟悉掌握概念是解題的關鍵13、1.【解析】

解:∵四邊形ABCD是菱形,∠D=78°,∴∠ACB=(180°-∠D)=51°,又∵四邊形AECD是圓內接四邊形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案為:1°14、<【解析】【分析】根據(jù)實數(shù)大小比較的方法進行比較即可得答案.【詳解】∵32=9,9<10,∴3<,故答案為:<.【點睛】本題考查了實數(shù)大小的比較,熟練掌握實數(shù)大小比較的方法是解題的關鍵.15、1【解析】

根據(jù)七巧板的性質可得BI=IC=CH=HE,因為S△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得點G到EF的距離為sin45°,根據(jù)平行四邊形的面積即可求解.【詳解】由七巧板性質可知,BI=IC=CH=HE.又∵S△BIC=1,∠BIC=90°,∴BI?IC=1,∴BI=IC=,∴BC==1,∵EF=BC=1,F(xiàn)G=EH=BI=,∴點G到EF的距離為:,∴平行四邊形EFGH的面積=EF?=1×=1.故答案為1【點睛】本題考查了七巧板的性質、等腰直角三角形的性質及平行四邊形的面積公式,熟知七巧板的性質是解決問題的關鍵.16、x(x﹣2)(x﹣1)2【解析】

先整理出公因式(x2-2x),提取公因式后再對余下的多項式整理,利用提公因式法分解因式和完全平方公式法繼續(xù)進行因式分解.【詳解】解:(x2?2x)2?(2x?x2)=(x2?2x)2+(x2?2x)=(x2?2x)(x2?2x+1)=x(x?2)(x?1)2故答案為x(x﹣2)(x﹣1)2【點睛】此題考查了因式分解-提公因式法和公式法,熟練掌握這兩種方法是解題的關鍵.17、①②④【解析】

由正方形的性質和相似三角形的判定與性質,即可得出結論.【詳解】∵△BPC是等邊三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正確;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正確;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD與△PDB不會相似;故③錯誤;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH?PC,故④正確;故答案是:①②④.【點睛】本題考查的正方形的性質,等邊三角形的性質以及相似三角形的判定和性質,解答此題的關鍵是熟練掌握性質和定理.三、解答題(共7小題,滿分69分)18、(1)1;(2)證明見解析;(1)點坐標為.【解析】

由點B的坐標,利用反比例函數(shù)圖象上點的坐標特征可求出k值;設A點坐標為,則D點坐標為,P點坐標為,C點坐標為,進而可得出PB,PC,PA,PD的長度,由四條線段的長度可得出,結合可得出∽,由相似三角形的性質可得出,再利用“同位角相等,兩直線平行”可證出;由四邊形ABCD的面積和的面積相等可得出,利用三角形的面積公式可得出關于a的方程,解之取其負值,再將其代入P點的坐標中即可求出結論.【詳解】解:點在反比例函數(shù)的圖象,.故答案為:1.證明:反比例函數(shù)解析式為,設A點坐標為軸于點C,軸于點D,點坐標為,P點坐標為,C點坐標為,,,,,,,.又,∽,,.解:四邊形ABCD的面積和的面積相等,,,整理得:,解得:,舍去,點坐標為.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、相似三角形的判定與性質、平行線的判定以及三角形的面積,解題關鍵是:根據(jù)點的坐標,利用反比例函數(shù)圖象上點的坐標特征求出k值;利用相似三角形的判定定理找出∽;由三角形的面積公式,找出關于a的方程.19、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】

1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,根據(jù)tan∠AOC的值,設AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出A坐標,將A坐標代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標;(2)由A與B交點橫坐標,根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時,滿足△PDC與△ODC相似;當PC⊥CD,即∠PCD=時,滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長求出OP的長,即可確定出P的坐標.【詳解】解:(1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,OA=,tan∠AOC=,設AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時,△PDC∽△ODC;當PC⊥CD,即∠PCD=90°時,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時P坐標為(0,),綜上,滿足題意P的坐標為(0,)或(0,0).【點睛】此題屬于反比例函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點問題,坐標與圖形性質,勾股定理,銳角三角函數(shù)定義,相似三角形的判定與性質,利用了數(shù)形結合的思想,熟練運用數(shù)形結合思想是解題的關鍵.20、見解析【解析】試題分析:證明△ABE≌△ACD即可.試題解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如圖,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.21、39米【解析】

過點A作AE⊥CD,垂足為點E,在Rt△ADE中,利用三角函數(shù)求出的長,在Rt△ACE中,求出的長即可得.【詳解】解:過點A作AE⊥CD,垂足為點E,由題意得,AE=BC=28,∠EAD=25°,∠EAC=43°,在Rt△ADE中,∵,∴,在Rt△ACE中,∵,∴,∴(米),答:建筑物CD的高度約為39米.22、(1)y=5x+9000;(2)每天至少獲利10800元;(3)每天生產(chǎn)A產(chǎn)品250件,B產(chǎn)品350件獲利最大,最大利潤為9625元.【解析】試題分析:(1)A種品牌白酒x瓶,則B種品牌白酒(600-x)瓶;利潤=A種品牌白酒瓶數(shù)×A種品牌白酒一瓶的利潤+B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論