




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Presenter:ZHANGJinLIYue2010.10.25DataAnalysisandEthicsinBusinessResearchOutline1.PrinciplesandProceduresofExploratoryDataAnalysis2.MissingData3.LongitudinalandCross-sectionalTests4.DataAnalyticTrendsandDoctoralTraining5.EthicalIssuesinBusinessResearch6.FromtheEditors:anEthicalQuiz7.AcademyofManagementCodeofEthicalConduct1.1PrinciplesofExploratoryDataAnalysisWhatisEDA?AdetectiveworktodiscoverpatternsindatawithdifferentmethodsAnattitudetoexploredataconsistentlyandthoroughlyAplausiblestorytotellratherthandrawingconclusionsDefinitionExploratorydataanalysis(EDA)isawell-establishedstatisticaltraditionthatprovidesconceptualandcomputationaltoolsfordiscoveringpatternstofosterhypothesisdevelopmentandrefinement.EDA&CDAFormulationvs.Test(Generatingthedirectionvs.Testingthemyth)EDAhelpstointerpretresultsofCDAandmayrevealunexpectedormisunderstandingofpatternsinthedata.1.2ProceduresofEDABelief:GetarichdescriptionofdataUseofgraphics;Processofiterativemodelfit;ResidualAnalysisUnderstandtheContextInteractionofpriorknowledgeandpresentdataanalysisQuantitativeknowingdependsonqualitativeknowingFundamentalobservationswithstatisticalabilityUseGraphicRepresentationofData
“GraphicanalysisiscentraltoEDA”PortraynumerousdatavaluessimultaneouslySimpleplot;stem-and-leafplot;dotplot;boxplot;densitysmoothers;interactivecomputergraphics.1.2ProceduresofEDA——GraphicsGraphicRepresentationofData(1):SimplePlotLinearregressionStraightandsimpletounderstand1.2ProceduresofEDA——GraphicsGraphicRepresentationofData(2):BoxPlotMarkfirstandthirdquartilesOfferinformationaboutthelocationofkeyelementsinthedistributionandomitmoresubtledetailsUsefulwhenanumberofdistributionneedtobecompared1.2ProceduresofEDA——GraphicsGraphicRepresentationofData(3):DensitySmoothersDisclosesomehiddeninformationOverlayingdensityfunctionallowsdirectcomparisonofshape1.2ProceduresofEDADevelopModelsinanIterativeProcessandTentativeModelSpecificationandResidualAssessmentData=Fit+ResidualBuildaTwo-WayFitApplythefit-plus-residualframeworkiterativelyinbothdimensionsExample:LauverandJones’researchoncareer-self-efficacyCollectoccupationalpreferencedatafromethnicallydiversegroupsPercentageofstudentsconsideringthatcareeranoption1.2ProceduresofEDA——ModelFitBuildaTwo-WayFit:Example1.2ProceduresofEDA——ResidualAnalysisBuildaTwo-WayFit:Example1.2ProceduresofEDA——IterativeProcessUseRobustandResistantMethodsResistance;Smoothness;BreadthApproachestoassessresistance(breakdownpoint;trimean,etc.)PayAttentiontoOutliersCorrectmentalandcomputationalmodelsConsiderimportantdataandphenomenaoriginallyunanticipatedReexpresstheOriginalScalesTransformation(avoidradicalchangeofunderlyinginformation)Usualmethod(logarithmicscale;standardscore)PuttingitAllTogether
–
AnIterativeProcesstoFollowGraphics—Initialmodel,fit-plus-residual—ResidualAnalysis—Transformation,Outliers—Modificationofmodel(Iteratively)1.3ConclusionsEDAisFindpatternsinthedatatobuildrichmentalmodelsEspeciallyusefulwhenlittletheoreticalbackgroundavailablePromotetheorydevelopmentandtestingmendationsAWillingnesstoExplore;APhilosophyofYourOwn2.1FundamentalsWhatisMissingData?In
statistics,
missingvalues
occurwhenno
data
value
isstoredforthe
variable
inthecurrent
observation.(Wikipedia)TypeandPatternsofNonresponseUnitnonresponse←reweightingItemnonresponse←singleimputationWavenonresponse←MI(multipleimputation)&ML(maximumlikelihood)Univariatepattern(figure1)MonotonepatternArbitrarypattern2.1Fundamentals2.2OlderMethodsCaseDeletionDiscardunitwhoseinformationispleteSimplicity;GenerallyvalidonlyunderMCAR;inefficiencySingleImputationImputingunconditionalmeansImputingfromunconditionaldistributionsImputingconditionalmeansImputingfromaconditionaldistribution
2.3MLEstimationML(maximumlikelihood)MLestimatesarenotsubstantiallybiasedunderMCARorMARbutarequitebiasedunderMNARAssumingthesampleislargeenoughDependingontheparticularapplicationAssumingunderMARconditionSoftwareforMLEstimationBMDP;SPSS;EMCOV;NORM;SAS;Mplus;S-PLUS;LISREL;Amelia
2.4MultipleImputation2.4MultipleImputationFeaturesofMIRelyingonlarge-sampleapproximationsRequiringassumptionsaboutthedistributionofmissingnessMissingvaluesforeachparticipantarepredictedfromhisorherownobservedvaluesThejointrelationshipsamongthevariablesmustbeestimatedfromallavailabledataingroupMISoftwareNORMSASprocedure:PROCMIS-PLUSAmelia
3.1GravitationtoJobsCommensuratewithAbilityGravitationalHypothesisIndividuals,overthecourseoftheirlabormarketexperiences,willsortthemselvesintojobscompatiblewiththeirinterests,valuesandabilities.Goodperson-jobfitConceptsofFitIndividual’sbeliefandorganization’scultureIndividual’sabilityandabilityrequirementsforjobTwoTestsDirectionswithDifferentDatabaseLongitudinal–individual–directtestCross-sectional–job–indirecttest3.2Study1——LongitudinalTestHypothesisOvertime,lowerabilitypeoplewillgravitateintolowercomplexityjobsandhigherabilitypeoplewillgravitateintohighercomplexityjobsParticipantsDatafromNLSYdatabase;asampleof3887participantsValidscoresforASVABsubtest;occupationcodesVariablesAge(controlvariable)Cognitiveability(“g”fromASVABsubtestscores)Jobcomplexityin1982&1987OAPMap:sortjobsin13categoriesanddifferentiatebetweenjobsonthebasisofcognitiveabilityrequiredtoperformthejobto10levels3.2Study1——LongitudinalTestsOAPMap3.2Study1——LongitudinalTestsResultsSupportGravitationalHypothesis(Table2)IndividualsmovinglowerinthehierarchyovertimeshouldhavelowerabilityscoresthanthosewhoremainatthesamelevelorthosewhoproceedupwardThosemovinghigherhavethehighestmeangscoresCognitiveability(gscore)isasignificantpredictorofOAPmap(Table3)3.3Study2——Cross-sectionalTestsHypothesisAmoreexperiencedgroupofemployeesinaparticularjobwillexhibitlessvariabilityincognitiveabilitythanalessexperiencedgroupParticipantsDatafromUSES;asampleof60job-firmcombinationfor6051participantsValiddataforbothfirmandjobexperience;GATBscoresVariablesCognitiveability(GATBabilityscores)Firmandjobexperience(USES,self-reported)Jobcomplexity(5-categorysystemdevelopedbyJohnHuster)ResultBothfirmandjobexperiencearesignificantlyrelatedtovarianceofcognitiveabilityLess-experiencedgrouptendtohavelargervariability3.4ConclusionGravitationtoJobsCommensurateAbilityIndividualwithhighercognitiveabilitymoveintojobsrequiringmorecognitiveability.Groupshigherinbothfirmandjobexperiencehavesmallervariance.
Whatcouldwelearnfromthispaper?Twodifferentapproachestotesthypothesis:longitudinalandcross-sectionalDirectandindirecttestsDifferentdatabasetouse4.1DataAnalyticTrendsandTraininginStrategicManagementHittetal.’sassertion“Strategicmanagementresearchismovingbeyondcross-sectional,multipleregressionapproachestomethodsmoreattunedtothespecificproblemsandissueslikelytoinfluencestrategyresearch,suchasnetworkanalysis,eventstudies,andPoisson/negativebinomialregression”Doctoralstudentsshouldbetrainedincertainspecializedmethodratherthantraditionalmethod
ATwo-studyDesignTracktrendsintheuseofdataanalytictechniquesUnderstandthelevelofmasteryrecentdoctoralgraduatespossesswithbothtraditionalandspecializedmethods4.2Study1——DataAnalyticTrendsSampleandDataArticlespublishedinStrategicManagementJournal(SMJ)from1980to2001Asampleof297presentedoriginalempiricalstudiesCodeandgroupanalyticmethodsindifferentcategorizations4.2Study1——DataAnalyticTrends4.2Study1——DataAnalyticTrendsSampleandDataArticlespublishedinStrategicManagementJournal(SMJ)from1980to2001Asampleof297presentedoriginalempiricalstudiesCodeandgroupanalyticmethodsindifferentcategorizationsResultsBasictechniquesfalloutoffavor(e.g.testofmeans)GLMremainthedominantgroupoftechniques(e.g.multipleregressionandhierarchicalregression)Specializedtechniquesgrowinuse4.3Study2——PhDTrainingSampleandData77strategicmanagementPhDresearchers“Whenyouleftgraduateschool,howcompetentwereyouwitheachmethod?”/“Towhatextentareyoucompetentnowwiththesemethods?”Collectanswers(scales1-5)from1996to20014.3Study2——PhDTraining4.3Study2——PhDTrainingSampleandData77strategicmanagementPhDresearchersbetween1996to2001“Whenyouleftgraduateschool,howcompetentwereyouwitheachmethod?”/“Towhatextentareyoucompetentnowwiththesemethods?”Collectanswers(scales1-5)from1996to2001ResultsTraditionaltechniques:welltrainedSpecializedtechniques:notimprovedsincegraduationMorerecentgraduatesleftgraduateschoolpossessmoreconfidencesometechniquesthenearliergraduates4.4ConclusionDataAnalyticMethodTrendRiseofsomespecializedtechniquesRelianceofregressionmodelManyresearchersarenotfullyexploitingtheirdataDoctoralTrainingPhDgraduatesarecompetentwithacoresetoftechniquesInadequatetrainingforvitalmethodsofcurrentandfutureknowledgedevelopmentDoctoralprogramsshouldworktoclosethegapbetweenwhatstudentsknowandwhattheyneedtoknow5.1RightsandObligationsoftheRespondentRightsoftheRespondentPrivacyBeinginformedObligationsoftheRespondentBeingtruthful5.2RightsandObligationsoftheClientSponsorRightsoftheClientSponsorPrivacyBeinginformedObligationsoftheClientSponsorObservinggeneralbusinessethicswhendealingwithresearchsuppliersAvoidingmisusingtheresearchfindingstosupportitsaimsRespectingresearchsubjects’privacyBeingopenaboutitsintentionsandbusinessproblems5.3RightsandObligationsoftheResearcherRightsoftheResearcherBeinginformedObligationsoftheResearcherAdheringtothepurposeoftheresearchMaintainingobjectivityAvoidingmisrepresentingresearchfindingsProtectingsubjectsandclients’righttoconfidentialityAvoidingshadingresearchconclusions6FromtheEditors:anEthicalQuizScenario1:PlagiarismWhatdoyouthinkaboutthefollowingbehaviors?ReusingadescriptionofasampleyouwroteforanotherpaperReusingadescriptionofascaleyouusedinanotherpaperThe“codeofethical”ofAOMAOMmembersexplicitlyciteothers’workorideas,includingtheirown,eveniftheworkorideasarenotquotedverbatimorparaphrased.Scenario2:Data(Re)useThe“codeofethical”ofAOMWhenAOMmemberspublishdataorfindingsthatoverlapwithworktheyhavepreviouslypublishedelsewhere,theycitethesepublications,andtheymustsendthepriorpublicationworktotheAOMjournaleditors.6FromtheEditors:anEthicalQuizScenario3:InstitutionalReviewBoard(IRB)The“codeofethical”ofAOMWhenAOMmembersconductresearch,theyshouldobtaintheinformedconsentoftheindividualsScenario4:CoauthorsWhatdoyouthinkaboutthefollowingbehaviors?SubmittingapapertoajournalorconferencewithoutallofthecoauthorsbeingawareofitAddingacoauthorwithoutgettingthepermissionofthosealreadyonthepaperThe“cod
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)的勞動(dòng)合同范本5篇
- 電力傳感器采購(gòu)合同常用電子版8篇
- 生產(chǎn)方合同協(xié)議
- 珠寶顧問(wèn)擔(dān)保協(xié)議書模板
- 貓爪免責(zé)協(xié)議書范本
- 白酒加盟店轉(zhuǎn)讓合同協(xié)議
- 電廠粉煤灰合同協(xié)議
- 生石灰購(gòu)銷合同協(xié)議
- 生產(chǎn)紙張采購(gòu)合同協(xié)議
- 生產(chǎn)空?qǐng)龅爻鲎夂贤瑓f(xié)議
- MOOC 電子線路分析基礎(chǔ)-西安電子科技大學(xué) 中國(guó)大學(xué)慕課答案
- 15j403-1樓梯欄桿標(biāo)準(zhǔn)
- CATIA CAA二次開(kāi)發(fā)開(kāi)發(fā)教材
- 2024年03月湖南省韶山思政教育實(shí)踐中心2024年招考5名合同聘用制教師筆試歷年高頻考題(難、易錯(cuò)點(diǎn)薈萃)答案帶詳解附后
- 2024-2025年全國(guó)初中化學(xué)競(jìng)賽試卷及答案
- 電力各種材料重量表總
- 自動(dòng)化公司發(fā)展規(guī)劃方案
- 2024年山西焦煤西山煤電集團(tuán)公司招聘筆試參考題庫(kù)含答案解析
- 光伏治沙的方案
- 醫(yī)療器械(耗材)項(xiàng)目投標(biāo)服務(wù)投標(biāo)方案(技術(shù)方案)
- 鄉(xiāng)村醫(yī)生從業(yè)管理?xiàng)l例全面解讀
評(píng)論
0/150
提交評(píng)論