云南省宜良第一中學2025屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第1頁
云南省宜良第一中學2025屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第2頁
云南省宜良第一中學2025屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第3頁
云南省宜良第一中學2025屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第4頁
云南省宜良第一中學2025屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省宜良第一中學2025屆高一數(shù)學第一學期期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的定義域是()A. B.C. D.2.函數(shù)f(x)=lnx+3x-7的零點所在的區(qū)間是()A. B.C. D.3.酒駕是嚴重危害交通安全的違法行為.為了保障交通安全,根據(jù)國家有關(guān)規(guī)定:血液中酒精含量達到的駕駛員即為酒后駕車,及以上認定為醉酒駕車.假設(shè)某駕駛員喝了一定量的酒后,其血液中酒精含量上升到.如果在停止喝酒以后,他血液中酒精含量會以每小時30%的速度減少,那么他至少要經(jīng)過()小時才能駕駛.(參考數(shù)據(jù):,)A.1 B.3C.5 D.74.已知冪函數(shù)的圖象過點,則下列說法中正確的是()A.的定義域為 B.的值域為C.為偶函數(shù) D.為減函數(shù)5.對于函數(shù)定義域中任意的,,當時,總有①;②都成立,則滿足條件的函數(shù)可以是()A. B.C. D.6.若函數(shù)的定義域和值域都為R,則關(guān)于實數(shù)a的下列說法中正確的是A.或3 B.C.或 D.7.函數(shù)的最大值與最小值分別為()A.3,-1 B.3,-2C.2,-1 D.2,-28.冪函數(shù)的圖象不過原點,則()A. B.C.或 D.9.從3名男同學,2名女同學中任選2人參加體能測試,則選到的2名同學中至少有一名男同學的概率是()A. B.C. D.10.已知集合,則A B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若是的最大值,則實數(shù)t的取值范圍是______12.設(shè)函數(shù),則是_________(填“奇函數(shù)”或“偶函數(shù)”);對于一定的正數(shù)T,定義則當時,函數(shù)的值域為_________13.函數(shù)的單調(diào)遞增區(qū)間為________________.14.已知且,且,函數(shù)的圖象過定點A,A在函數(shù)的圖象上,且函數(shù)的反函數(shù)過點,則______.15.已知函數(shù)是冪函數(shù),且時,單調(diào)遞減,則的值為___________.16.已知函數(shù)的最大值與最小值之差為,則______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.若存在實數(shù)、使得,則稱函數(shù)為、的“函數(shù)”(1)若.為、的“函數(shù)”,其中為奇函數(shù),為偶函數(shù),求、的解析式;(2)設(shè)函數(shù),,是否存在實數(shù)、使得為、的“函數(shù)”,且同時滿足:①是偶函數(shù);②的值域為.若存在,請求出、的值;若不存在,請說明理由.(注:為自然數(shù).)18.如圖,已知,分別是正方體的棱,的中點.求證:平面平面.19.求函數(shù)的定義域,并指出它的單調(diào)性及單調(diào)區(qū)間20.已知函數(shù)(,且)(1)求的值及函數(shù)的定義域;(2)若函數(shù)在上的最大值與最小值之差為3,求實數(shù)的值21.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由函數(shù)解析式有意義可得出關(guān)于實數(shù)的不等式組,由此可求得原函數(shù)的定義域.【詳解】函數(shù)有意義,只需且,解得且因此,函數(shù)的定義域為.故選:D.2、C【解析】由函數(shù)的解析式求得f(2)f(3)<0,再根據(jù)根據(jù)函數(shù)零點的判定定理可得函數(shù)f(x)的零點所在的區(qū)間【詳解】∵函數(shù)f(x)=lnx+3x-7在其定義域上單調(diào)遞增,∴f(2)=ln2+2×3-7=ln2-1<0,f(3)=ln3+9-7=ln3+2>0,∴f(2)f(3)<0.根據(jù)函數(shù)零點的判定定理可得函數(shù)f(x)的零點所在的區(qū)間是(2,3),故選C【點睛】本題主要考查求函數(shù)的值,函數(shù)零點的判定定理,屬于基礎(chǔ)題3、C【解析】設(shè)經(jīng)過個小時才能駕駛,則,再根據(jù)指數(shù)函數(shù)的性質(zhì)及對數(shù)的運算計算可得.詳解】設(shè)經(jīng)過個小時才能駕駛,則,即由于在定義域上單調(diào)遞減,∴∴他至少經(jīng)過5小時才能駕駛.故選:C4、C【解析】首先求出冪函數(shù)解析式,再根據(jù)冪函數(shù)的性質(zhì)一一判斷即可.【詳解】解:因為冪函數(shù)的圖象過點,所以,所以,所以,定義域為,且,即為偶函數(shù),因為,所以,所以,故A錯誤,B錯誤,C正確,又在上單調(diào)遞減,根據(jù)偶函數(shù)的對稱性可得在上單調(diào)遞增,故D錯誤;故選:C5、B【解析】根據(jù)函數(shù)在上是增函數(shù),且是上凸函數(shù)判斷.【詳解】由當時,總有,得函數(shù)在上是增函數(shù),由,得函數(shù)是上凸函數(shù),在上是增函數(shù)是增函數(shù),是下凸函數(shù),故A錯誤;在上是增函數(shù)是增函數(shù),是上凸函數(shù),故B正確;在上是增函數(shù),是下凸函數(shù);故C錯誤;在上是減函數(shù),故D錯誤.故選:B6、B【解析】若函數(shù)的定義域和值域都為R,則.解得或3.當時,,滿足題意;當時,,值域為{1},不滿足題意.故選B.7、D【解析】分析:將化為,令,可得關(guān)于t的二次函數(shù),根據(jù)t的取值范圍,求二次函數(shù)的最值即可.詳解:利用同角三角函數(shù)關(guān)系化簡,設(shè),則,根據(jù)二次函數(shù)性質(zhì)當時,y取最大值2,當時,y取最小值.故選D.點睛:本題考查三角函數(shù)有關(guān)的最值問題,此類問題一般分為兩類,一種是解析式化為的形式,用換元法求解;另一種是將解析式化為的形式,根據(jù)角的范圍求解.8、B【解析】根據(jù)冪函數(shù)的性質(zhì)求參數(shù).【詳解】是冪函數(shù),解得或或冪函數(shù)的圖象不過原點,即故選:B9、A【解析】先計算一名男同學都沒有的概率,再求至少有一名男同學的概率即可.【詳解】兩名同學中一名男同學都沒有的概率為,則2名同學中至少有一名男同學的概率是.故選:A.10、C【解析】分析:先解指數(shù)不等式得集合A,再根據(jù)偶次根式被開方數(shù)非負得集合B,最后根據(jù)補集以及交集定義求結(jié)果.詳解:因為,所以,因為,所以因此,選C.點睛:合的基本運算的關(guān)注點(1)看元素組成.集合是由元素組成的,從研究集合中元素的構(gòu)成入手是解決集合運算問題的前提(2)有些集合是可以化簡的,先化簡再研究其關(guān)系并進行運算,可使問題簡單明了,易于解決(3)注意數(shù)形結(jié)合思想的應用,常用的數(shù)形結(jié)合形式有數(shù)軸、坐標系和Venn圖二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先求出時最大值為,再由是的最大值,解出t的范圍.【詳解】當時,,由對勾函數(shù)的性質(zhì)可得:在時取得最大值;當時,,且是的最大值,所以,解得:.故答案為:12、①.偶函數(shù)②.【解析】利用函數(shù)奇偶性的定義判斷的奇偶性;分別求出分段函數(shù)每段上的值域,從而求出的值域為.【詳解】函數(shù)定義域為R,且,故是偶函數(shù);,因為,所以,當時,,當時,,故的值域為故答案為:偶函數(shù),13、【解析】函數(shù)由,復合而成,求出函數(shù)的定義域,根據(jù)復合函數(shù)的單調(diào)性即可得結(jié)果.【詳解】函數(shù)由,復合而成,單調(diào)遞減令,解得或,即函數(shù)的定義域為,由二次函數(shù)的性質(zhì)知在是減函數(shù),在上是增函數(shù),由復合函數(shù)的單調(diào)性判斷知函數(shù)的單調(diào)遞增區(qū)間,故答案為.【點睛】本題考查用復合函數(shù)的單調(diào)性求單調(diào)區(qū)間,此題外層是一對數(shù)函數(shù),故要先解出函數(shù)的定義域,在定義域上研究函數(shù)的單調(diào)區(qū)間,這是本題易失分點,切記!14、8【解析】由圖象平移變換和指數(shù)函數(shù)的性質(zhì)可得點A坐標,然后結(jié)合反函數(shù)的性質(zhì)列方程組可解.【詳解】函數(shù)的圖象可以由的圖象向右平移2各單位長度,再向上平移3個單位長度得到,故點A坐標為,又的反函數(shù)過點,所以函數(shù)過點,所以,解得,所以.故答案為:815、【解析】根據(jù)冪函數(shù)定義求出m的值,根據(jù)函數(shù)的單調(diào)性確定m的值,再利用對數(shù)運算即可.【詳解】為冪函數(shù),,解得:或當時,在上單調(diào)遞增,不符合題意,舍去;當時,在上單調(diào)遞減,符合題意;,故答案為:16、或.【解析】根據(jù)冪函數(shù)的性質(zhì),結(jié)合題意,分類討論,利用單調(diào)性列出方程,即可求解.【詳解】由題意,函數(shù),當時,函數(shù)在上為單調(diào)遞增函數(shù),可得,解得;當時,顯然不成立;當時,函數(shù)在上為單調(diào)遞減函數(shù),可得,解得,綜上可得,或.故答案為:或.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2)存在;,.【解析】(1)由已知條件可得出關(guān)于、的等式組,由此可解得函數(shù)、的解析式;(2)由偶函數(shù)的定義可得出,由函數(shù)的值域結(jié)合基本不等式以及對數(shù)函數(shù)的單調(diào)性可求得的值,進而可求得的值,即可得解.【小問1詳解】解:因為為、的“函數(shù)”,所以①,所以因為為奇函數(shù),為偶函數(shù),所以,所以②聯(lián)立①②解得,【小問2詳解】解:假設(shè)存在實數(shù)、,使得為,的“函數(shù)”則①因為是偶函數(shù),所以即,即,因為,整理得因為對恒成立,所②,因為,當且僅當,即時取等號所以,由于的值域為,所以,且又因為,所以,綜上,存在,滿足要求18、見解析【解析】取的中點,連接、,則,進一步得到四邊形為平行四邊形,同理得到四邊形為平行四邊形,結(jié)合線面平行的判定即可得到結(jié)果.【詳解】證明:取的中點,連接、.因為、分別為、的中點,.四邊形為平行四邊形..、分別為、的中點,∴,∴四邊形為平行四邊形,∴,∴.∵平面,平面,平面又,平面平面.【點睛】本題主要考查面面平行的判定,屬于基礎(chǔ)題型.19、答案見解析【解析】由題,解不等式得定義域,再根據(jù),利用整體代換法求解函數(shù)的單調(diào)遞減區(qū)間即可.【詳解】解:要使函數(shù)有意義,應滿足,解得∴函數(shù)定義域為.∵,∴,解得,∴函數(shù)的單調(diào)遞減區(qū)間為.20、(1)0;;(2)或.【解析】(1)代入計算得,由對數(shù)有意義列出不等式求解作答.(2)由a值分類討論

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論