




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題壓軸題含答案一、解答題1.如圖是一塊正方形紙片.(1)如圖1,若正方形紙片的面積為1dm2,則此正方形的對(duì)角線AC的長(zhǎng)為dm.(2)若一圓的面積與這個(gè)正方形的面積都是2πcm2,設(shè)圓的周長(zhǎng)為C圓,正方形的周長(zhǎng)為C正,則C圓C正(填“=”或“<”或“>”號(hào))(3)如圖2,若正方形的面積為16cm2,李明同學(xué)想沿這塊正方形邊的方向裁出一塊面積為12cm2的長(zhǎng)方形紙片,使它的長(zhǎng)和寬之比為3:2,他能裁出嗎?請(qǐng)說明理由?2.如圖,用兩個(gè)邊長(zhǎng)為15的小正方形拼成一個(gè)大的正方形,(1)求大正方形的邊長(zhǎng)?(2)若沿此大正方形邊的方向剪出一個(gè)長(zhǎng)方形,能否使剪出的長(zhǎng)方形紙片的長(zhǎng)寬之比為4:3,且面積為720cm2?3.如圖用兩個(gè)邊長(zhǎng)為cm的小正方形紙片拼成一個(gè)大的正方形紙片,沿著大正方形紙片的邊的方向截出一個(gè)長(zhǎng)方形紙片,能否使截得的長(zhǎng)方形紙片長(zhǎng)寬之比為,且面積為cm2?請(qǐng)說明理由.4.小麗想用一塊面積為的正方形紙片,如圖所示,沿著邊的方向裁出一塊面積為的長(zhǎng)方形紙片,使它的長(zhǎng)是寬的2倍.她不知能否裁得出來,正在發(fā)愁.小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說法嗎?你認(rèn)為小麗能用這塊紙片裁出符合要求的紙片嗎?為什么?5.有一塊正方形鋼板,面積為16平方米.(1)求正方形鋼板的邊長(zhǎng).(2)李師傅準(zhǔn)備用它裁剪出一塊面積為12平方米的長(zhǎng)方形工件,且要求長(zhǎng)寬之比為,問李師傅能辦到嗎?若能,求出長(zhǎng)方形的長(zhǎng)和寬;若不能,請(qǐng)說明理由.(參考數(shù)據(jù):,).二、解答題6.如圖,直線HDGE,點(diǎn)A在直線HD上,點(diǎn)C在直線GE上,點(diǎn)B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大小;(3)如圖3,點(diǎn)P是線段AB上一點(diǎn),PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說明理由.7.已知直線AB//CD,點(diǎn)P、Q分別在AB、CD上,如圖所示,射線PB按逆時(shí)針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時(shí)針方向每秒3°旋轉(zhuǎn)至QD停止,此時(shí)射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時(shí)開始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時(shí)間10秒時(shí),PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動(dòng),當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為多少秒時(shí),PB′//QC′.8.已知,定點(diǎn),分別在直線,上,在平行線,之間有一動(dòng)點(diǎn).(1)如圖1所示時(shí),試問,,滿足怎樣的數(shù)量關(guān)系?并說明理由.(2)除了(1)的結(jié)論外,試問,,還可能滿足怎樣的數(shù)量關(guān)系?請(qǐng)畫圖并證明(3)當(dāng)滿足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關(guān)系.(直接寫出結(jié)論)9.綜合與探究(問題情境)王老師組織同學(xué)們開展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(dòng)(1)如圖1,,點(diǎn)、分別為直線、上的一點(diǎn),點(diǎn)為平行線間一點(diǎn),請(qǐng)直接寫出、和之間的數(shù)量關(guān)系;(問題遷移)(2)如圖2,射線與射線交于點(diǎn),直線,直線分別交、于點(diǎn)、,直線分別交、于點(diǎn)、,點(diǎn)在射線上運(yùn)動(dòng),①當(dāng)點(diǎn)在、(不與、重合)兩點(diǎn)之間運(yùn)動(dòng)時(shí),設(shè),.則,,之間有何數(shù)量關(guān)系?請(qǐng)說明理由.②若點(diǎn)不在線段上運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)都不重合),請(qǐng)你畫出滿足條件的所有圖形并直接寫出,,之間的數(shù)量關(guān)系.10.綜合與實(shí)踐背景閱讀:在同一平面內(nèi),兩條不重合的直線的位置關(guān)系有相交、平行,若兩條不重合的直線只有一個(gè)公共點(diǎn),我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關(guān)系的性質(zhì)和判定是幾何的重要知識(shí),是初中階段幾何合情推理的基礎(chǔ).已知:AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系;(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.三、解答題11.[感知]如圖①,,求的度數(shù).小樂想到了以下方法,請(qǐng)幫忙完成推理過程.解:(1)如圖①,過點(diǎn)P作.∴(_____________),∴,∴________(平行于同一條直線的兩直線平行),∴_____________(兩直線平行,同旁內(nèi)角互補(bǔ)),∴,∴,∴,即.[探究]如圖②,,求的度數(shù);[應(yīng)用](1)如圖③,在[探究]的條件下,的平分線和的平分線交于點(diǎn)G,則的度數(shù)是_________o.(2)已知直線,點(diǎn)A,B在直線a上,點(diǎn)C,D在直線b上(點(diǎn)C在點(diǎn)D的左側(cè)),連接,若平分平分,且所在的直線交于點(diǎn)E.設(shè),請(qǐng)直接寫出的度數(shù)(用含的式子表示).12.如圖1,E點(diǎn)在上,..(1)求證:(2)如圖2,平分,與的平分線交于H點(diǎn),若比大,求的度數(shù).(3)保持(2)中所求的的度數(shù)不變,如圖3,平分平分,作,則的度數(shù)是否改變?若不變,請(qǐng)直接寫出答案;若改變,請(qǐng)說明理由.13.如圖1,點(diǎn)O在上,,射線交于點(diǎn)C,已知m,n滿足:.(1)試說明//的理由;(2)如圖2,平分,平分,直線、交于點(diǎn)E,則______;(3)若將繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),其余條件都不變,在旋轉(zhuǎn)過程中,的度數(shù)是否發(fā)生變化?請(qǐng)說明你的結(jié)論.14.如圖1,為直線上一點(diǎn),過點(diǎn)作射線,將一直角三角板()的直角頂點(diǎn)放在點(diǎn)處,一邊在射線上,另一邊與都在直線的上方,將圖1中的三角板繞點(diǎn)以每秒3°的速度沿順時(shí)針方向旋轉(zhuǎn)一周.(1)幾秒后與重合?(2)如圖2,經(jīng)過秒后,,求此時(shí)的值.(3)若三角板在轉(zhuǎn)動(dòng)的同時(shí),射線也繞點(diǎn)以每秒6°的速度沿順時(shí)針方向旋轉(zhuǎn)一周,那么經(jīng)過多長(zhǎng)時(shí)間與重合?請(qǐng)畫圖并說明理由.(4)在(3)的條件下,求經(jīng)過多長(zhǎng)時(shí)間平分?請(qǐng)畫圖并說明理由.15.問題情境(1)如圖1,已知,,,求的度數(shù).佩佩同學(xué)的思路:過點(diǎn)作,進(jìn)而,由平行線的性質(zhì)來求,求得________.問題遷移(2)圖2.圖3均是由一塊三角板和一把直尺拼成的圖形,三角板的兩直角邊與直尺的兩邊重合,,,與相交于點(diǎn),有一動(dòng)點(diǎn)在邊上運(yùn)動(dòng),連接,,記,.①如圖2,當(dāng)點(diǎn)在,兩點(diǎn)之間運(yùn)動(dòng)時(shí),請(qǐng)直接寫出與,之間的數(shù)量關(guān)系;②如圖3,當(dāng)點(diǎn)在,兩點(diǎn)之間運(yùn)動(dòng)時(shí),與,之間有何數(shù)量關(guān)系?請(qǐng)判斷并說明理由;拓展延伸(3)當(dāng)點(diǎn)在,兩點(diǎn)之間運(yùn)動(dòng)時(shí),若,的角平分線,相交于點(diǎn),請(qǐng)直接寫出與,之間的數(shù)量關(guān)系.四、解答題16.如圖,平分,平分,請(qǐng)判斷與的位置關(guān)系并說明理由;如圖,當(dāng)且與的位置關(guān)系保持不變,移動(dòng)直角頂點(diǎn),使,當(dāng)直角頂點(diǎn)點(diǎn)移動(dòng)時(shí),問與否存在確定的數(shù)量關(guān)系?并說明理由.如圖,為線段上一定點(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn)且與的位置關(guān)系保持不變,①當(dāng)點(diǎn)在射線上運(yùn)動(dòng)時(shí)(點(diǎn)除外),與有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.②當(dāng)點(diǎn)在射線的反向延長(zhǎng)線上運(yùn)動(dòng)時(shí)(點(diǎn)除外),與有何數(shù)量關(guān)系?直接寫出猜想結(jié)論,不需說明理由.17.直線MN與直線PQ垂直相交于O,點(diǎn)A在射線OP上運(yùn)動(dòng),點(diǎn)B在射線OM上運(yùn)動(dòng),A、B不與點(diǎn)O重合,如圖1,已知AC、BC分別是∠BAP和∠ABM角的平分線,(1)點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠ACB的大小是否發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由;若不發(fā)生變化,試求出∠ACB的大小.(2)如圖2,將△ABC沿直線AB折疊,若點(diǎn)C落在直線PQ上,則∠ABO=________,如圖3,將△ABC沿直線AB折疊,若點(diǎn)C落在直線MN上,則∠ABO=________(3)如圖4,延長(zhǎng)BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其反向延長(zhǎng)線交于E、F,則∠EAF=;在△AEF中,如果有一個(gè)角是另一個(gè)角的倍,求∠ABO的度數(shù).18.如圖1,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問題:(1)仔細(xì)觀察,在圖2中有個(gè)以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.19.在中,,,點(diǎn)在直線上運(yùn)動(dòng)(不與點(diǎn)、重合),點(diǎn)在射線上運(yùn)動(dòng),且,設(shè).(1)如圖①,當(dāng)點(diǎn)在邊上,且時(shí),則__________,__________;(2)如圖②,當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的左側(cè)時(shí),其他條件不變,請(qǐng)猜想和的數(shù)量關(guān)系,并說明理由;(3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的右側(cè)時(shí),其他條件不變,和還滿足(2)中的數(shù)量關(guān)系嗎?請(qǐng)?jiān)趫D③中畫出圖形,并給予證明.(畫圖痕跡用黑色簽字筆加粗加黑)20.如圖,△ABC和△ADE有公共頂點(diǎn)A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,則∠EAC=;(2)如圖1,過AC上一點(diǎn)O作OG⊥AC,分別交AB、AD、AE于點(diǎn)G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求線段OF的長(zhǎng);②如圖2,∠AFO的平分線和∠AOF的平分線交于點(diǎn)M,∠FHD的平分線和∠OGB的平分線交于點(diǎn)N,∠N+∠M的度數(shù)是否發(fā)生變化?若不變,求出其度數(shù);若改變,請(qǐng)說明理由.【參考答案】一、解答題1.(1);(2)<;(3)不能;理由見解析.【分析】(1)由正方形面積,易求得正方形邊長(zhǎng),再由勾股定理求對(duì)角線長(zhǎng);(2)由圓面積公式,和正方形面積可求周長(zhǎng),比較兩數(shù)大小可以采用比商法;(3)采解析:(1);(2)<;(3)不能;理由見解析.【分析】(1)由正方形面積,易求得正方形邊長(zhǎng),再由勾股定理求對(duì)角線長(zhǎng);(2)由圓面積公式,和正方形面積可求周長(zhǎng),比較兩數(shù)大小可以采用比商法;(3)采用方程思想求出長(zhǎng)方形的長(zhǎng)邊,與正方形邊長(zhǎng)比較大小即可.【詳解】解:(1)由已知AB2=1,則AB=1,由勾股定理,AC=;故答案為:.(2)由圓面積公式,可得圓半徑為,周長(zhǎng)為,正方形周長(zhǎng)為4.;即C圓<C正;故答案為:<(3)不能;由已知設(shè)長(zhǎng)方形長(zhǎng)和寬為3xcm和2xcm∴長(zhǎng)方形面積為:2x?3x=12解得x=∴長(zhǎng)方形長(zhǎng)邊為3>4∴他不能裁出.【點(diǎn)睛】本題主要考查了算術(shù)平方根在正方形、圓、長(zhǎng)方形面積中的應(yīng)用,靈活的進(jìn)行算術(shù)平方根的計(jì)算與無理數(shù)大小比較是解題的關(guān)鍵.2.(1)30;(2)不能.【解析】【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長(zhǎng);(2)先求出長(zhǎng)方形的邊長(zhǎng),再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正解析:(1)30;(2)不能.【解析】【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長(zhǎng);(2)先求出長(zhǎng)方形的邊長(zhǎng),再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正方形的邊長(zhǎng)是:=30;(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為4xcm,寬為3xcm,則4x?3x=720,解得:x=,4x==>30,所以沿此大正方形邊的方向剪出一個(gè)長(zhǎng)方形,不能使剪出的長(zhǎng)方形紙片的長(zhǎng)寬之比為4:3,且面積為720cm2.故答案為(1)30;(2)不能.【點(diǎn)睛】本題考查算術(shù)平方根,解題的關(guān)鍵是能根據(jù)題意列出算式.3.不能截得長(zhǎng)寬之比為,且面積為cm2的長(zhǎng)方形紙片,見解析【分析】根據(jù)拼圖求出大正方形的邊長(zhǎng),再根據(jù)長(zhǎng)方形的長(zhǎng)、寬之比為3:2,計(jì)算長(zhǎng)方形的長(zhǎng)與寬進(jìn)行驗(yàn)證即可.【詳解】解:不能,因?yàn)榇笳叫渭埥馕觯翰荒芙氐瞄L(zhǎng)寬之比為,且面積為cm2的長(zhǎng)方形紙片,見解析【分析】根據(jù)拼圖求出大正方形的邊長(zhǎng),再根據(jù)長(zhǎng)方形的長(zhǎng)、寬之比為3:2,計(jì)算長(zhǎng)方形的長(zhǎng)與寬進(jìn)行驗(yàn)證即可.【詳解】解:不能,因?yàn)榇笳叫渭埰拿娣e為()2+()2=36(cm2),所以大正方形的邊長(zhǎng)為6cm,設(shè)截出的長(zhǎng)方形的長(zhǎng)為3bcm,寬為2bcm,則6b2=30,所以b=(取正值),所以3b=3=>,所以不能截得長(zhǎng)寬之比為3:2,且面積為30cm2的長(zhǎng)方形紙片.【點(diǎn)睛】本題考查了算術(shù)平方根,理解算術(shù)平方根的意義是正確解答的關(guān)鍵.4.不同意,理由見解析【分析】先求得正方形的邊長(zhǎng),然后設(shè)設(shè)長(zhǎng)方形寬為,長(zhǎng)為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長(zhǎng),從而可作出判斷.【詳解】解:不同意,因?yàn)檎叫蔚拿娣e為,解析:不同意,理由見解析【分析】先求得正方形的邊長(zhǎng),然后設(shè)設(shè)長(zhǎng)方形寬為,長(zhǎng)為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長(zhǎng),從而可作出判斷.【詳解】解:不同意,因?yàn)檎叫蔚拿娣e為,故邊長(zhǎng)為設(shè)長(zhǎng)方形寬為,則長(zhǎng)為長(zhǎng)方形面積∴,解得(負(fù)值舍去)長(zhǎng)為即長(zhǎng)方形的長(zhǎng)大于正方形的邊長(zhǎng),所以不能裁出符合要求的長(zhǎng)方形紙片【點(diǎn)睛】本題主要考查的是算術(shù)平方根的性質(zhì),熟練掌握算術(shù)平方根的性質(zhì)是解題的關(guān)鍵.5.(1)4米(2)見解析【分析】(1)根據(jù)正方形邊長(zhǎng)與面積間的關(guān)系求解即可;(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為米、米,由其面積可得x值,比較長(zhǎng)方形的長(zhǎng)和寬與正方形邊長(zhǎng)的大小可得結(jié)論.【詳解】解解析:(1)4米(2)見解析【分析】(1)根據(jù)正方形邊長(zhǎng)與面積間的關(guān)系求解即可;(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為米、米,由其面積可得x值,比較長(zhǎng)方形的長(zhǎng)和寬與正方形邊長(zhǎng)的大小可得結(jié)論.【詳解】解:(1)正方形的面積是16平方米,正方形鋼板的邊長(zhǎng)是米;(2)設(shè)長(zhǎng)方形的長(zhǎng)寬分別為米、米,則,,,,,長(zhǎng)方形長(zhǎng)是米,而正方形的邊長(zhǎng)為4米,所以李師傅不能辦到.【點(diǎn)睛】本題考查了算術(shù)平方根的實(shí)際應(yīng)用,靈活的利用算術(shù)平方根表示正方形和長(zhǎng)方形的邊長(zhǎng)是解題的關(guān)鍵.二、解答題6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過點(diǎn)B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).7.(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時(shí),∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根解析:(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時(shí),∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時(shí),②當(dāng)15<t≤30時(shí),③當(dāng)30<t<45時(shí),根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時(shí)間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時(shí)間30秒時(shí),由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時(shí),如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時(shí),如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時(shí),如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運(yùn)用方程思想解決幾何問題.8.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間有一動(dòng)點(diǎn),因此需要對(duì)點(diǎn)的位置進(jìn)行分類討論:如圖1,當(dāng)點(diǎn)在的左側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(2)當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(3)①若當(dāng)點(diǎn)在的左側(cè)時(shí),;當(dāng)點(diǎn)在的右側(cè)時(shí),可求得;②結(jié)合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過點(diǎn)作,,,,,,;(2)如圖2,當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;過點(diǎn)作,,,,,,;(3)①如圖3,若當(dāng)點(diǎn)在的左側(cè)時(shí),,,,分別平分和,,,;如圖4,當(dāng)點(diǎn)在的右側(cè)時(shí),,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關(guān)系為:或.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),平行公理和及推論等知識(shí)點(diǎn),作輔助線后能求出各個(gè)角的度數(shù),是解此題的關(guān)鍵.9.(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對(duì)點(diǎn)P進(jìn)行分類討論解析:(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對(duì)點(diǎn)P進(jìn)行分類討論:當(dāng)點(diǎn)在延長(zhǎng)線時(shí);當(dāng)在之間時(shí);與①同理,利用平行線的性質(zhì),即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過作交于,∵,∴,∴,,∴;②當(dāng)點(diǎn)在延長(zhǎng)線時(shí),如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當(dāng)在之間時(shí),如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點(diǎn)睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練掌握兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行內(nèi)錯(cuò)角相等,從而得到角的關(guān)系.10.(1);(2)見解析;(3)105°【分析】(1)通過平行線性質(zhì)和直角三角形內(nèi)角關(guān)系即可求解.(2)過點(diǎn)B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結(jié)論,結(jié)合角平分線性質(zhì)解析:(1);(2)見解析;(3)105°【分析】(1)通過平行線性質(zhì)和直角三角形內(nèi)角關(guān)系即可求解.(2)過點(diǎn)B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結(jié)論,結(jié)合角平分線性質(zhì)即可求解.【詳解】解:(1)如圖1,設(shè)AM與BC交于點(diǎn)O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點(diǎn)B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點(diǎn)B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點(diǎn)睛】本題考查平行線性質(zhì),畫輔助線,找到角的和差倍分關(guān)系是求解本題的關(guān)鍵.三、解答題11.[感知]見解析;[探究]70°;[應(yīng)用](1)35;(2)或【分析】[感知]過點(diǎn)P作PM∥AB,根據(jù)平行線的性質(zhì)得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度數(shù),結(jié)合∠1可得結(jié)果;解析:[感知]見解析;[探究]70°;[應(yīng)用](1)35;(2)或【分析】[感知]過點(diǎn)P作PM∥AB,根據(jù)平行線的性質(zhì)得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度數(shù),結(jié)合∠1可得結(jié)果;[探究]過點(diǎn)P作PM∥AB,根據(jù)AB∥CD,PM∥CD,進(jìn)而根據(jù)平行線的性質(zhì)即可求∠EPF的度數(shù);[應(yīng)用](1)如圖③所示,在[探究]的條件下,根據(jù)∠PEA的平分線和∠PFC的平分線交于點(diǎn)G,可得∠G的度數(shù);(2)畫出圖形,分點(diǎn)A在點(diǎn)B左側(cè)和點(diǎn)A在點(diǎn)B右側(cè),兩種情況,分別求解.【詳解】解:[感知]如圖①,過點(diǎn)P作PM∥AB,∴∠1=∠AEP=40°(兩直線平行,內(nèi)錯(cuò)角相等)∵AB∥CD,∴PM∥CD(平行于同一條直線的兩直線平行),∴∠2+∠PFD=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),∴∠PFD=130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF=90°;[探究]如圖②,過點(diǎn)P作PM∥AB,∴∠MPE=∠AEP=50°,∵AB∥CD,∴PM∥CD,∴∠PFC=∠MPF=120°,∴∠EPF=∠MPF-∠MPE=120°-50°=70°;[應(yīng)用](1)如圖③所示,∵EG是∠PEA的平分線,F(xiàn)G是∠PFC的平分線,∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°,過點(diǎn)G作GM∥AB,∴∠MGE=∠AEG=25°(兩直線平行,內(nèi)錯(cuò)角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一條直線的兩直線平行),∴∠GFC=∠MGF=60°(兩直線平行,內(nèi)錯(cuò)角相等).∴∠G=∠MGF-∠MGE=60°-25°=35°.故答案為:35.(2)當(dāng)點(diǎn)A在點(diǎn)B左側(cè)時(shí),如圖,故點(diǎn)E作EF∥AB,則EF∥CD,∴∠ABE=∠BEF,∠CDE=∠DEF,∵平分平分,,∴∠ABE=∠BEF=,∠CDE=∠DEF=,∴∠BED=∠BEF+∠DEF=;當(dāng)點(diǎn)A在點(diǎn)B右側(cè)時(shí),如圖,故點(diǎn)E作EF∥AB,則EF∥CD,∴∠DEF=∠CDE,∠ABG=∠BEF,∵平分平分,,∴∠DEF=∠CDE=,∠ABG=∠BEF=,∴∠BED=∠DEF-∠BEF=;綜上:∠BED的度數(shù)為或.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì)、平行公理及推論,角平分線的定義,解決本題的關(guān)鍵是熟練運(yùn)用平行線的性質(zhì).12.(1)見解析;(2)100°;(3)不變,40°【分析】(1)如圖1,延長(zhǎng)交于點(diǎn),根據(jù),,可得,所以,可得,又,進(jìn)而可得結(jié)論;(2)如圖2,作,,根據(jù),可得,根據(jù)平行線的性質(zhì)得角之間的關(guān)系,再解析:(1)見解析;(2)100°;(3)不變,40°【分析】(1)如圖1,延長(zhǎng)交于點(diǎn),根據(jù),,可得,所以,可得,又,進(jìn)而可得結(jié)論;(2)如圖2,作,,根據(jù),可得,根據(jù)平行線的性質(zhì)得角之間的關(guān)系,再根據(jù)比大,列出等式即可求的度數(shù);(3)如圖3,過點(diǎn)作,設(shè)直線和直線相交于點(diǎn),根據(jù)平行線的性質(zhì)和角平分線定義可求的度數(shù).【詳解】解:(1)證明:如圖1,延長(zhǎng)交于點(diǎn),,,,,,,,;(2)如圖2,作,,,,,,平分,,,,,,,平分,,,,,設(shè),,比大,,解得的度數(shù)為;(3)的度數(shù)不變,理由如下:如圖3,過點(diǎn)作,設(shè)直線和直線相交于點(diǎn),平分,平分,,,,,,,,,由(2)可知:,,,,,,.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).13.(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也解析:(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也易得∠COE的度數(shù),由三角形外角的性質(zhì)即可求得∠OEF的度數(shù);(3)不變,分三種情況討論即可.【詳解】(1)∵,,且∴,∴m=20,n=70∴∠MOC=90゜-∠AOM=70゜∴∠MOC=∠OCQ=70゜∴MN∥PQ(2)∵∠AON=180゜-∠AOM=160゜又∵平分,平分∴,∵∴∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜故答案為:45.(3)不變,理由如下:如圖,當(dāng)0゜<α<20゜時(shí),∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜當(dāng)α=20゜時(shí),OD與OB共線,則∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜當(dāng)20゜<α<90゜時(shí),如圖∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜綜上所述,∠EOF的度數(shù)不變.【點(diǎn)睛】本題主要考查了角平分線的定義,平行線的判定與性質(zhì),角的和差關(guān)系,注意分類討論,引入適當(dāng)?shù)牧勘阌谶\(yùn)算簡(jiǎn)便.14.(1)10秒;(2)20秒;(3)20秒,畫圖見解析;(4)秒,畫圖見解析【分析】(1)用角的度數(shù)除以轉(zhuǎn)動(dòng)速度即可得;(2)求出∠AON=60°,結(jié)合旋轉(zhuǎn)速度可得時(shí)間t;(3)設(shè)∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,畫圖見解析;(4)秒,畫圖見解析【分析】(1)用角的度數(shù)除以轉(zhuǎn)動(dòng)速度即可得;(2)求出∠AON=60°,結(jié)合旋轉(zhuǎn)速度可得時(shí)間t;(3)設(shè)∠AON=3t,則∠AOC=30°+6t,由題意列出方程,解方程即可;(4)根據(jù)轉(zhuǎn)動(dòng)速度關(guān)系和OC平分∠MOB,由題意列出方程,解方程即可.【詳解】解:(1)∵30÷3=10,∴10秒后ON與OC重合;(2)∵M(jìn)N∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴經(jīng)過t秒后,MN∥AB,t=20秒.(3)如圖3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板繞點(diǎn)O以每秒3°的速度,射線OC也繞O點(diǎn)以每秒6°的速度旋轉(zhuǎn),設(shè)∠AON=3t,則∠AOC=30°+6t,∵OC與OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即經(jīng)過20秒時(shí)間OC與OM重合;(4)如圖4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板繞點(diǎn)O以每秒3°的速度,射線OC也繞O點(diǎn)以每秒6°的速度旋轉(zhuǎn),設(shè)∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=∠BOM=(90°-3t),由題意得:180°-(30°+6t)=(90°-3t),解得:t=秒,即經(jīng)過秒OC平分∠MOB.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),角的計(jì)算以及方程的應(yīng)用,關(guān)鍵是應(yīng)該認(rèn)真審題并仔細(xì)觀察圖形,找到各個(gè)量之間的關(guān)系求出角的度數(shù)是解題的關(guān)鍵.15.(1);(2)①,②,理由見解析;(3)【分析】(1)過點(diǎn)作,則,由平行線的性質(zhì)可得的度數(shù);(2)①過點(diǎn)作的平行線,依據(jù)平行線的性質(zhì)可得與,之間的數(shù)量關(guān)系;②過作,依據(jù)平行線的性質(zhì)可得,,即解析:(1);(2)①,②,理由見解析;(3)【分析】(1)過點(diǎn)作,則,由平行線的性質(zhì)可得的度數(shù);(2)①過點(diǎn)作的平行線,依據(jù)平行線的性質(zhì)可得與,之間的數(shù)量關(guān)系;②過作,依據(jù)平行線的性質(zhì)可得,,即可得到;(3)過和分別作的平行線,依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到與,之間的數(shù)量關(guān)系為.【詳解】解:(1)如圖1,過點(diǎn)作,則,由平行線的性質(zhì)可得,,又∵,,∴,故答案為:;(2)①如圖2,與,之間的數(shù)量關(guān)系為;過點(diǎn)P作PM∥FD,則PM∥FD∥CG,∵PM∥FD,∴∠1=∠α,∵PM∥CG,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:,②如圖,與,之間的數(shù)量關(guān)系為;理由:過作,∵,∴,∴,,∴;(3)如圖,由①可知,∠N=∠3+∠4,∵EN平分∠DEP,AN平分∠PAC,∴∠3=∠α,∠4=∠β,∴,∴與,之間的數(shù)量關(guān)系為.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解決問題的關(guān)鍵是過拐點(diǎn)作平行線,利用平行線的性質(zhì)得出結(jié)論.四、解答題16.(1)詳見解析;(2)∠BAE+∠MCD=90°,理由詳見解析;(3)詳見解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)詳見解析;(2)∠BAE+∠MCD=90°,理由詳見解析;(3)詳見解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結(jié)論;(2)過E作EF∥AB,根據(jù)平行線的性質(zhì)可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結(jié)論;(3)根據(jù)AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.試題解析:證明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+∠MCD=90°.證明如下:過E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如圖3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如圖4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.點(diǎn)睛:本題考查了平行線的性質(zhì),根據(jù)題意作出平行線是解答此題的關(guān)鍵.17.(1)∠AEB的大小不會(huì)發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠解析:(1)∠AEB的大小不會(huì)發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據(jù)三角形的外角的性質(zhì)得到∠PAB+∠ABM=270°,根據(jù)角平分線的定義得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到結(jié)論;(2)由于將△ABC沿直線AB折疊,若點(diǎn)C落在直線PQ上,得到∠CAB=∠BAQ,由角平分線的定義得到∠PAC=∠CAB,即可得到結(jié)論;根據(jù)將△ABC沿直線AB折疊,若點(diǎn)C落在直線MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到結(jié)論;(3)由∠BAO與∠BOQ的角平分線相交于E可得出∠E與∠ABO的關(guān)系,由AE、AF分別是∠BAO和∠OAG的角平分線可知∠EAF=90°,在△AEF中,由一個(gè)角是另一個(gè)角的倍分情況進(jìn)行分類討論即可.【詳解】解:(1)∠ACB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分別是∠BAP和∠ABM角的平分線,∴∠BAC=∠PAB,∠ABC=∠ABM,∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵將△ABC沿直線AB折疊,若點(diǎn)C落在直線PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵將△ABC沿直線AB折疊,若點(diǎn)C落在直線MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案為:30°,60°;(3)∵AE、AF分別是∠BAO與∠GAO的平分線,∴∠EAO=∠BAO,∠FAO=∠GAO,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分別是∠BAO和∠OAG的角平分線,∴∠EAF=∠EAO+∠FAO=(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵有一個(gè)角是另一個(gè)角的倍,故有:①∠EAF=∠F,∠E=30°,∠ABO=60°;②∠F=∠E,∠E=36°,∠ABO=72°;③∠EAF=∠E,∠E=60°,∠ABO=120°(舍去);④∠E=∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO為60°或72°.【點(diǎn)睛】本題主要考查的是角平分線的性質(zhì)以及三角形內(nèi)角和定理的應(yīng)用.解決這個(gè)問題的關(guān)鍵就是要能根據(jù)角平分線的性質(zhì)將外角的度數(shù)與三角形的內(nèi)角聯(lián)系起來,然后再根據(jù)內(nèi)角和定理進(jìn)行求解.另外需要分類討論的時(shí)候一定要注意分類討論的思想.18.(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個(gè),以O(shè)為交點(diǎn)的“8字形”有2個(gè);(2)根據(jù)角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個(gè),以O(shè)為交點(diǎn)的“8字形”有2個(gè);(2)根據(jù)角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據(jù)三角形內(nèi)角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計(jì)算即可;(3)與(2)的證明方法一樣得到∠P=(2∠C+∠B).(4)根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠B+∠A=∠1,∠C+∠D=∠2,再根據(jù)四邊形內(nèi)角和為360°可得答案.【詳解】解:(1)在圖2中有3個(gè)以線段AC為邊的“8字形”,故答案為3;(2)∵∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案為360°.19.(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 道路設(shè)計(jì)中的交通心理學(xué)考量試題及答案
- 2025年工程項(xiàng)目管理成本控制試題及答案
- 2025標(biāo)準(zhǔn)的自建別墅房屋租賃合同范本
- 明晰2025年中級(jí)經(jīng)濟(jì)師的試題及答案
- 公共關(guān)系中的形象管理探討試題及答案
- 市政工程技術(shù)進(jìn)步試題及答案2025
- 公共關(guān)系在企業(yè)中的角色試題及答案
- 2025年市政工程考試高效組織復(fù)習(xí)內(nèi)容及試題及答案
- 2025年房屋買賣合同樣本
- 中級(jí)經(jīng)濟(jì)師考試技巧分享試題及答案
- 熔鹽法合成鎂鋁尖晶石的開題報(bào)告
- 統(tǒng)編版六年級(jí)下冊(cè)期中復(fù)習(xí)閱讀專項(xiàng)訓(xùn)練-閱讀理解(三)(含答案+詳細(xì)解析)
- 成品灰氣力輸送計(jì)算書
- 不同直徑和標(biāo)鋼筋植筋拉拔試驗(yàn)設(shè)計(jì)值
- 名校滬教牛津上海版六年級(jí)英語下冊(cè)Unit 4單元同步測(cè)試卷含答案
- 工程量計(jì)算服務(wù)合同
- 雪茄培訓(xùn)雪茄知識(shí)學(xué)習(xí)課件
- 年產(chǎn)十萬噸丙烯酸項(xiàng)目設(shè)計(jì)說明書(西北大學(xué))
- 《擬行路難》(其四) 統(tǒng)編版高中語文選擇性必修下冊(cè)
- 2023年中考物理復(fù)習(xí)方法技巧及備考策略指導(dǎo)(教學(xué)交流課件)
- 員工警告通知書(六篇)
評(píng)論
0/150
提交評(píng)論