版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆陜西西安地區(qū)高一上數(shù)學(xué)期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,都是正數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件2.設(shè),,則的值為()A. B.C.1 D.e3.已知向量,則ABC=A30 B.45C.60 D.1204.已知命題,則是()A., B.,C., D.,5.已知函數(shù),若函數(shù)在上有3個零點,則m的取值范圍為()A. B.C. D.6.已知點在外,則直線與圓的位置關(guān)系為()A.相交B.相切C.相離D.相交、相切、相離三種情況均有可能7.若函數(shù)和.分別由下表給出:011012301則不等式的解集為()A. B.C. D.8.已知,是第三象限角,則的值為()A. B.C. D.9.已知函數(shù)(,且)在上單調(diào)遞減,且關(guān)于x的方程恰有兩個不相等的實數(shù)解,則的取值范圍是A. B.[,]C.[,]{} D.[,){}10.已知函數(shù)fx=x+a,x≤0,x2,x>0,那么“a=0”是A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.已知在上是增函數(shù),則的取值范圍是___________.12.已知a,b為直線,α,β,γ為平面,有下列四個命題:(1)a∥α,b∥β,則a∥b;(2)a⊥γ,b⊥γ,則a∥b;(3)a∥b,b?α,則a∥α;(4)a⊥b,a⊥α,則b∥α;其中正確命題是__13.Sigmoid函數(shù)是一個在生物學(xué)、計算機(jī)神經(jīng)網(wǎng)絡(luò)等領(lǐng)域常用的函數(shù)模型,其解析式為S(x)=11+e-x,則此函數(shù)在R上________(填“單調(diào)遞增”“單調(diào)遞減”或14.計算:______.15.已知定義在上的函數(shù),滿足不等式,則的取值范圍是______16.定義域為的奇函數(shù),當(dāng)時,,則關(guān)于的方程所有根之和為,則實數(shù)的值為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若,求的最大值;(2)若,求關(guān)于不等式的解集.18.已知,.(Ⅰ)求證:函數(shù)在上是增函數(shù);(Ⅱ)若,求實數(shù)的取值范圍.19.已知角α的終邊經(jīng)過點,且為第二象限角(1)求、、的值;(2)若,求的值20.已知角的頂點與原點重合,始邊與軸的非負(fù)半軸重合,它的終邊在直線上.(1)求的值;(2)求值21.我們知道:人們對聲音有不同感覺,這與它的強(qiáng)度有關(guān)系,聲音的強(qiáng)度用(單位:)表示,但在實際測量時,常用聲音的強(qiáng)度水平(單位:分貝)表示,它們滿足公式:(,其中()),是人們能聽到的最小強(qiáng)度,是聽覺的開始.請回答以下問題:(Ⅰ)樹葉沙沙聲的強(qiáng)度為(),耳語的強(qiáng)度為(),無線電廣播的強(qiáng)度為(),試分別求出它們的強(qiáng)度水平;(Ⅱ)某小區(qū)規(guī)定:小區(qū)內(nèi)公共場所的聲音的強(qiáng)度水平必須保持在分貝以下(不含分貝),試求聲音強(qiáng)度的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】利用特殊值法、基本不等式結(jié)合充分條件、必要條件的定義判斷可得出結(jié)論.【詳解】充分性:由于,,且,取,則,充分性不成立;必要性:由于,,且,解得,必要性成立.所以,當(dāng),時,“”“”必要不充分條件.故選:B.2、A【解析】根據(jù)所給分段函數(shù)解析式計算可得;【詳解】解:因為,,所以,所以故選:A3、A【解析】由題意,得,所以,故選A【考點】向量的夾角公式【思維拓展】(1)平面向量與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;(2)由向量的數(shù)量積的性質(zhì)知,,,因此,利用平面向量的數(shù)量積可以解決與長度、角度、垂直等有關(guān)的問題4、C【解析】由全稱命題的否定是特稱命題即可得結(jié)果.【詳解】由全稱命題的否定是特稱命題知:,,是,,故選:C.5、A【解析】畫出函數(shù)圖像,分解因式得到,有一個解故有兩個解,根據(jù)圖像得到答案.【詳解】畫出函數(shù)的圖像,如圖所示:當(dāng)時,即,有一個解;則有兩個解,根據(jù)圖像知:故選:【點睛】本題考查了函數(shù)的零點問題,畫出函數(shù)圖像,分解因式是解題的關(guān)鍵.6、A【解析】結(jié)合點與圓的位置關(guān)系,直線和圓的位置關(guān)系列不等式,由此確定正確答案.【詳解】是圓C:外一點,,圓心到直線的距離:,直線與圓相交故選:A7、C【解析】根據(jù)題中的條件進(jìn)行驗證即可.【詳解】當(dāng)時,有成立,故是不等式的解;當(dāng)時,有不成立,故不是不等式的解;當(dāng)時,有成立,故是不等式的解.綜上:可知不等式的解集為.故選:C8、A【解析】利用同角三角函數(shù)的平方關(guān)系求出的值,然后利用兩角差的余弦公式求出的值.【詳解】為第三象限角,所以,,因此,.故選:A.【點睛】本題考查利用兩角差的余弦公式求值,在利用同角三角函數(shù)基本關(guān)系求值時,要結(jié)合角的取值范圍確定所求三角函數(shù)值的符號,考查計算能力,屬于基礎(chǔ)題.9、C【解析】由在上單調(diào)遞減可知,由方程恰好有兩個不相等的實數(shù)解,可知,,又時,拋物線與直線相切,也符合題意,∴實數(shù)的取值范圍是,故選C.【考點】函數(shù)性質(zhì)綜合應(yīng)用【名師點睛】已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路:(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解10、A【解析】利用充分條件和必要條件的定義判斷.【詳解】當(dāng)a=0時,fx=x,x≤0當(dāng)函數(shù)fx是增函數(shù)時,則a≤0故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】將整理分段函數(shù)形式,由在上單調(diào)遞增,進(jìn)而可得,即可求解【詳解】由題,,顯然,在時,單調(diào)遞增,因為在上單調(diào)遞增,所以,即,故答案為:【點睛】本題考查已知函數(shù)單調(diào)性求參數(shù),考查分段函數(shù),考查一次函數(shù)的單調(diào)性的應(yīng)用12、②【解析】對于①,,則,位置關(guān)系不確定,的位置關(guān)系不能確定;對于②,由垂直于同一平面的兩直線平行知,結(jié)論正確;對于③,,則或;對于④,,則或,故答案為②.【方法點晴】本題主要考查線面平行的判定與性質(zhì)、面面垂直的性質(zhì)及線面垂直的判定,屬于難題.空間直線、平面平行或垂直等位置關(guān)系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.13、①.單調(diào)遞增②.0,1【解析】由題可得S(x)=1-1e【詳解】∵S(x)=11+e?x1,x2∵x1<x∴S(x1)-S(所以函數(shù)S(x)=11+e又ex所以ex+1>1,0<1故答案為:單調(diào)遞增;0,1.14、【解析】利用指數(shù)冪和對數(shù)的運算性質(zhì)可計算出所求代數(shù)式的值.【詳解】原式.故答案為:.【點睛】本題考查指數(shù)與對數(shù)的計算,考查指數(shù)冪與對數(shù)運算性質(zhì)的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.15、【解析】觀察函數(shù)的解析式,推斷函數(shù)的性質(zhì),借助函數(shù)性質(zhì)解不等式【詳解】令,則,得,即函數(shù)的圖像關(guān)于中心對稱,且單調(diào)遞增,不等式可化為,即,得,解集為【點睛】利用函數(shù)解決不等式問題,關(guān)鍵是根據(jù)不等式構(gòu)造適當(dāng)?shù)暮瘮?shù),通過研究函數(shù)的單調(diào)性等性質(zhì)解決問題16、【解析】由題意,作函數(shù)y=f(x)與y=a的圖象如下,結(jié)合圖象,設(shè)函數(shù)F(x)=f(x)﹣a(0<a<1)的零點分別為x1,x2,x3,x4,x5,則x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵關(guān)于x的方程f(x)﹣a=0(0<a<1)所有根之和為1﹣,∴a=故答案為.點睛:函數(shù)的零點或方程的根的問題,一般以含參數(shù)的三次式、分式、以e為底的指數(shù)式或?qū)?shù)式及三角函數(shù)式結(jié)構(gòu)的函數(shù)零點或方程根的形式出現(xiàn),一般有下列兩種考查形式:(1)確定函數(shù)零點、圖象交點及方程根的個數(shù)問題;(2)應(yīng)用函數(shù)零點、圖象交點及方程解的存在情況,求參數(shù)的值或取值范圍問題研究方程根的情況,可以通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值、函數(shù)的變化趨勢等,根據(jù)題目要求,通過數(shù)形結(jié)合的思想去分析問題,可以使得問題的求解有一個清晰、直觀的整體展現(xiàn).同時在解題過程中要注意轉(zhuǎn)化與化歸、函數(shù)與方程、分類討論思想的應(yīng)用三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)答案見解析【解析】(1)由題得,利用基本不等式可求;(2)不等式即,討論的大小可求解.【小問1詳解】由,得.,,即(當(dāng)且僅當(dāng)時“”成立.).故的最大值為;【小問2詳解】,即.當(dāng)時,即時,不等式的解集為當(dāng)時,即時,不等式的解集為;當(dāng)時,即時,不等式的解集為.綜上,當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為.18、(Ⅰ)答案見詳解;(Ⅱ).【解析】(Ⅰ)利用定義法證明函數(shù)單調(diào)性;(Ⅱ)判斷函數(shù)奇偶性,并結(jié)合的單調(diào)性將不等式轉(zhuǎn)化為不等式組,求出實數(shù)的取值范圍.【詳解】(Ⅰ)任取,則,,即,所以函數(shù)在上是增函數(shù);(Ⅱ)因為函數(shù)定義域為,關(guān)于原點對稱,又,所以函數(shù)為奇函數(shù),又,即,即,由(Ⅰ)知函數(shù)在上是增函數(shù),所以,即,故實數(shù)的取值范圍為.【點睛】(1)大題中一般采用定義法證明函數(shù)單調(diào)性;(2)利用單調(diào)性解不等式問題,一般需要注意三個方面:①注意函數(shù)定義域范圍限制;②確定函數(shù)的單調(diào)性;③部分需要結(jié)合奇偶性轉(zhuǎn)化.19、(1);;(2).【解析】(1)由三角函數(shù)的定義和為第二象限角,求得,即點,再利用三角函數(shù)的定義,即可求解;(2)利用三角函數(shù)的誘導(dǎo)公式和三角函數(shù)的基本關(guān)系式化簡,代入即可求解.【詳解】(1)由三角函數(shù)的定義可知,解得,因為為第二象限角,∴,即點,則,由三角函數(shù)的定義,可得.(2)由(1)知和,可得=.【點睛】本題主要考查了三角函數(shù)的定義,以及三角函數(shù)的誘導(dǎo)公式的化簡、求值問題,其中解答中熟記三角函數(shù)的定義,熟練應(yīng)用三角函數(shù)的誘導(dǎo)公式,準(zhǔn)確計算是解答的關(guān)鍵你,著重考查了推理與運算能力,屬于基礎(chǔ)題.20、(1)或;(2)或;【解析】(1)在直線上任取一點,由已知角的終邊過點,利用誘導(dǎo)公式與三角函數(shù)定義即可求解,要注意分類討論m的正負(fù).(2)先利用商的關(guān)系化簡原式為,結(jié)合第一問利用三角函數(shù)定義分別求得與,要注意分類討論m的正負(fù).【詳解】(1)在直線上任取一點,由已知角的終邊過點,,,利用誘導(dǎo)公式與三角函數(shù)定義可得:,當(dāng)時,;當(dāng)時,(2)原式同理(1)利用三角函數(shù)定義可得:,當(dāng)時,,,此時原式;當(dāng)時,,,此時原式;【點睛】易錯點睛:本題考查三角函數(shù)化簡求值,解本題時要注意的事項:角的終邊在直線上,但未確定在象限,要分類討論,考查學(xué)生的轉(zhuǎn)化能力與運算解能力,屬于中檔題.21、(Ⅰ)0,20,40;(Ⅱ)大于或等于,同時應(yīng)小于.【解析】(Ⅰ)將樹葉沙沙聲的強(qiáng)度,耳語的強(qiáng)度,無線電廣播
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度雙方購房尾款支付合同范本3篇
- 2024年婚內(nèi)財產(chǎn)協(xié)議與離婚規(guī)定不同3篇
- 2024年度租賃合同:某物流公司倉庫租賃3篇
- 2024年大型企業(yè)供應(yīng)鏈管理部經(jīng)理勞動合同約定3篇
- 2024年度新能源設(shè)備品牌授權(quán)經(jīng)銷合同3篇
- 2024年度數(shù)據(jù)中心電源柜租賃及節(jié)能減排服務(wù)合同6篇
- 2024年物聯(lián)網(wǎng)技術(shù)在智能家居中的應(yīng)用合作協(xié)議書3篇
- 2024年度環(huán)保材料沙發(fā)銷售及環(huán)保認(rèn)證合同范本2篇
- 2024年婚姻解除與財產(chǎn)處理協(xié)議6篇
- 2024年二手房買賣居間服務(wù)協(xié)議2篇
- 2023年中國鐵路南寧局招聘筆試參考題庫附帶答案詳解
- 解、續(xù)聘物業(yè)服務(wù)意見單 選聘物業(yè)服務(wù)企業(yè)選票
- 李孟潮個體心理咨詢的操作
- 人工智能課題研究報告PPT模板
- 支氣管鏡吸痰操作標(biāo)準(zhǔn)
- 概率期末考試試題答案《概率論與數(shù)理統(tǒng)計B》
- 大學(xué)校園交通規(guī)劃以南京林業(yè)大學(xué)為例
- 山東2023泰安銀行春季校園招聘25人上岸提分題庫3套【500題帶答案含詳解】
- GB/T 11446.9-2013電子級水中微粒的儀器測試方法
- GB 8537-2018食品安全國家標(biāo)準(zhǔn)飲用天然礦泉水
- GB 31247-2014電纜及光纜燃燒性能分級
評論
0/150
提交評論