清華大學(xué)附中2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第1頁
清華大學(xué)附中2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第2頁
清華大學(xué)附中2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第3頁
清華大學(xué)附中2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第4頁
清華大學(xué)附中2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

清華大學(xué)附中2025屆高二上數(shù)學(xué)期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題,;命題,,那么下列命題為假命題的是()A. B.C. D.2.拋物線的準(zhǔn)線方程為,則實數(shù)的值為()A. B.C. D.3.已知拋物線的焦點坐標(biāo)是,則拋物線的標(biāo)準(zhǔn)方程為A. B.C. D.4.若,則x的值為()A.4 B.6C.4或6 D.85.在正方體中,為棱的中點,為棱的中點,則直線與平面所成角的正弦值為()A. B.C. D.6.下列對動直線的四種表述不正確的是()A.與曲線C:可能相離,相切,相交B.恒過定點C.時,直線斜率是0D.時,直線的傾斜角是135°7.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.8.若是雙曲線的左右焦點,是坐標(biāo)原點.過作的一條漸近線的垂線,垂足為,若,則該雙曲線的離心率為()A. B.C. D.9.已知橢圓的左、右焦點分別為,點是橢圓上的一點,點是線段的中點,為坐標(biāo)原點,若,則()A.3 B.4C.6 D.1110.過拋物線的焦點F的直線l與拋物線交于PQ兩點,若以線段PQ為直徑的圓與直線相切,則()A.8 B.7C.6 D.511.已知雙曲線左右焦點為,過的直線與雙曲線的右支交于,兩點,且,若線段的中垂線過點,則雙曲線的離心率為()A.3 B.2C. D.12.若拋物線x=﹣my2的焦點到準(zhǔn)線的距離為2,則m=()A.﹣4 B.C. D.±二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,滿足,則________14.過點作圓的切線,則切線方程為______.15.記為等差數(shù)列的前n項和.若,則_________.16.?dāng)?shù)列的前項和為,則該數(shù)列的通項公式___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,離心率為,橢圓上任一點滿足(1)求橢圓的方程;(2)若動直線與橢圓相交于、兩點,若坐標(biāo)原點總在以為直徑的圓外時,求的取值范圍.18.(12分)在下列所給的三個條件中任選一個,補充在下面的問題中,并加以解答①過(-1,2);②與直線平行;③與直線垂直問題:已知直線過點M(3,5),且______(1)求的方程;(2)若與圓相交于點A、B,求弦AB的長19.(12分)為了調(diào)查某蘋果園中蘋果的生長情況,在蘋果園中隨機(jī)采摘了個蘋果.經(jīng)整理分析后發(fā)現(xiàn),蘋果的重量(單位:)近似服從正態(tài)分布,如圖所示,已知,.(1)若從蘋果園中隨機(jī)采摘個蘋果,求該蘋果的重量在內(nèi)的概率;(2)從這個蘋果中隨機(jī)挑出個,這個蘋果的重量情況如下.重量范圍(單位:)個數(shù)為進(jìn)一步了解蘋果的甜度,從這個蘋果中隨機(jī)選出個,記隨機(jī)選出的個蘋果中重量在內(nèi)的個數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.20.(12分)【2018年新課標(biāo)I卷文】已知函數(shù)(1)設(shè)是的極值點.求,并求的單調(diào)區(qū)間;(2)證明:當(dāng)時,21.(12分)已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0(1)m取何值時兩圓外切?(2)m取何值時兩圓內(nèi)切?(3)當(dāng)m=45時,求兩圓公共弦所在直線的方程和公共弦的長22.(10分)已知是等差數(shù)列,是等比數(shù)列,且,,,.(1)求的通項公式;(2)設(shè),求數(shù)列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題設(shè)命題的描述判斷、的真假,再判斷其復(fù)合命題的真假即可.【詳解】對于命題,僅當(dāng)時,故為假命題;對于命題,由且開口向上,故為真命題;所以為真命題,為假命題,綜上,為真,為假,為真,為真.故選:B2、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準(zhǔn)線方程為,所以.故選:B3、D【解析】根據(jù)拋物線的焦點坐標(biāo)得到2p=4,進(jìn)而得到方程.【詳解】拋物線的焦點坐標(biāo)是,即p=2,2p=4,故得到方程為.故答案為D.【點睛】這個題目考查了拋物線的標(biāo)準(zhǔn)方程的求法,題目較為簡單.4、C【解析】根據(jù)組合數(shù)的性質(zhì)可求解.【詳解】,或,即或.故選:C5、D【解析】建立空間直角坐標(biāo)系,計算平面的法向量,利用線面角的向量公式即得解【詳解】不妨設(shè)正方體的棱長為2,連接,以為坐標(biāo)原點如圖建立空間直角坐標(biāo)系,則,,,,,,由于平面,平面,故又正方形,故平面故平面,所以為平面的一個法向量,故直線與平面所成角正弦值為.故選:D6、A【解析】根據(jù)過定點的直線系求出恒過點可判斷B,由點與圓的位置關(guān)系可判斷A,由直線方程可判斷CD.【詳解】直線可化為,令,,解得,,所以直線恒過定點,而該定點在圓C:內(nèi)部,所以必與該圓相交當(dāng)時,直線方程為,故斜率為0,當(dāng)時,直線方程為,故斜率為,傾斜角為135°.故選:A7、D【解析】根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號和極值點,據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點睛】本題考查導(dǎo)函數(shù)圖象的識別,此類問題應(yīng)根據(jù)原函數(shù)的單調(diào)性來考慮導(dǎo)函數(shù)的符號與零點情況,本題屬于基礎(chǔ)題.8、D【解析】根據(jù)已知條件,找出,的齊次關(guān)系式即可得到雙曲線的離心率.【詳解】由題意得,,,在中,,因,故,在,由余弦定理得,即,計算得,故.故選:D.【點睛】雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,結(jié)合轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)9、A【解析】利用橢圓的定義可得,再結(jié)合條件即求.【詳解】由橢圓的定義可知,因為,所以,因為點分別是線段,的中點,所以是的中位線,所以.故選:A.10、C【解析】依據(jù)拋物線定義可以證明:以過拋物線焦點F的弦PQ為直徑的圓與其準(zhǔn)線相切,則可以順利求得線段的長.【詳解】拋物線的焦點F,準(zhǔn)線取PQ中點H,分別過P、Q、H作拋物線準(zhǔn)線的垂線,垂足分別為N、M、E則四邊形為直角梯形,為梯形中位線,由拋物線定義可知,,,則故,即點H到拋物線準(zhǔn)線的距離為的一半,則以線段PQ為直徑的圓與拋物線的準(zhǔn)線相切.又以線段PQ為直徑的圓與直線相切,則以線段PQ為直徑的圓的直徑等于直線與直線間的距離.即故選:C11、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C12、D【解析】把拋物線的方程化為標(biāo)準(zhǔn)方程,由焦點到準(zhǔn)線的距離為,即可得到結(jié)果,得到答案.【詳解】由題意,拋物線,可得,又由拋物線的焦點到準(zhǔn)線的距離為2,即,解得.故選D.【點睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,以及簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記拋物線的焦點到準(zhǔn)線的距離為是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】根據(jù)遞推公式,依次代入即可求解.【詳解】數(shù)列滿足,當(dāng)時,可得,當(dāng)時,可得,當(dāng)時,可得,故答案為:15.14、【解析】求出切點與圓心連線的斜率后可得切線方程.【詳解】因為點在圓上,故切線必垂直于切點與圓心連線,而切點與圓心連線的斜率為,故切線的斜率為,故切線方程為:即.故答案為:.15、5【解析】根據(jù)等差數(shù)列前項和的公式及等差數(shù)列的性質(zhì)即可得出答案.【詳解】解:,所以.故答案為:5.16、【解析】根據(jù)與關(guān)系求解即可.【詳解】當(dāng)時,,當(dāng)時,,檢驗:,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)由已知計算可得即可得出方程.(2)由已知可得聯(lián)立方程,結(jié)合韋達(dá)定理計算即可得出結(jié)果.【小問1詳解】依題得解得:橢圓的方程為.【小問2詳解】由已知動直線與橢圓相交于、,設(shè)聯(lián)立得:解得:,即:或(*)坐標(biāo)原點總在以為直徑的圓外則:,即將(*)代入此式,解得:,即或或18、(1)(2)【解析】(1)可依次根據(jù)直線方程的點斜式、“兩直線平行,斜率相等”、“兩直線垂直,斜率相乘為-1”求直線l的方程;(2)利用垂徑定理即可求圓的弦長.【小問1詳解】選條件①:∵直線過點(3,5)及(-1,2),∴直線的斜率為,依題意,直線的方程為,即;選條件②:∵直線的斜率為,直線與直線平行,∴直線的斜率為,依題意,直線的方程為;即;選條件③:∵直線的斜率為,直線與直線垂直,∴直線的斜率為,依題意,直線的方程為,即;【小問2詳解】圓心為(2,3),半徑為2,圓心到直線的距離為∴19、(1);(2)分布列答案見解析,數(shù)學(xué)期望為.【解析】(1)利用正態(tài)密度曲線的對稱性結(jié)合已知條件可求得的值;(2)分析可知,隨機(jī)變量的所有可能取值為、、,計算出隨機(jī)變量在不同取值下的概率,可得出隨機(jī)變量的分布列,進(jìn)一步可求得的值.【小問1詳解】解:已知蘋果的重量(單位:)近似服從正態(tài)分布,由正態(tài)分布的對稱性可知,,所以從蘋果園中隨機(jī)采摘個蘋果,該蘋果的重量在內(nèi)的概率為.【小問2詳解】解:由題意可知,隨機(jī)變量的所有可能取值為、、,,;,所以,隨機(jī)變量的分布列為:所以20、(1)a=;f(x)在(0,2)單調(diào)遞減,在(2,+∞)單調(diào)遞增.(2)證明見解析.【解析】分析:(1)先確定函數(shù)的定義域,對函數(shù)求導(dǎo),利用f′(2)=0,求得a=,從而確定出函數(shù)的解析式,之后觀察導(dǎo)函數(shù)的解析式,結(jié)合極值點的位置,從而得到函數(shù)的增區(qū)間和減區(qū)間;(2)結(jié)合指數(shù)函數(shù)的值域,可以確定當(dāng)a≥時,f(x)≥,之后構(gòu)造新函數(shù)g(x)=,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得g(x)≥g(1)=0,利用不等式的傳遞性,證得結(jié)果.詳解:(1)f(x)的定義域為,f′(x)=aex–由題設(shè)知,f′(2)=0,所以a=從而f(x)=,f′(x)=當(dāng)0<x<2時,f′(x)<0;當(dāng)x>2時,f′(x)>0所以f(x)在(0,2)單調(diào)遞減,在(2,+∞)單調(diào)遞增(2)當(dāng)a≥時,f(x)≥設(shè)g(x)=,則當(dāng)0<x<1時,g′(x)<0;當(dāng)x>1時,g′(x)>0.所以x=1是g(x)的最小值點故當(dāng)x>0時,g(x)≥g(1)=0因此,當(dāng)時,點睛:該題考查的是有關(guān)導(dǎo)數(shù)的應(yīng)用問題,涉及到的知識點有導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值、導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系以及證明不等式問題,在解題的過程中,首先要保證函數(shù)的生存權(quán),先確定函數(shù)的定義域,之后根據(jù)導(dǎo)數(shù)與極值的關(guān)系求得參數(shù)值,之后利用極值的特點,確定出函數(shù)的單調(diào)區(qū)間,第二問在求解的時候構(gòu)造新函數(shù),應(yīng)用不等式的傳遞性證得結(jié)果.21、(1)(2)(3)直線方程為4x+3y-23=0,弦長為【解析】(1)先把兩個圓的方程化為標(biāo)準(zhǔn)形式,求出圓心和半徑,再根據(jù)兩圓的圓心距等于兩圓的半徑之和,求得m的值;(2)由兩圓的圓心距等于兩圓的半徑之差為,求得m的值.(3)當(dāng)m=45時,把兩個圓的方程相減,可得公共弦所在的直線方程.求出第一個圓的圓心(1,3)到公共弦所在的直線的距離d,再利用弦長公式求得弦長試題解析:(1)由已知可得兩個圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,兩圓的圓心距d==5,兩圓的半徑之和為+,由兩圓的半徑之和為+=5,可得m=(2)由兩圓的圓心距d=="5"等于兩圓的半徑之差為|-|,即|-|=5,可得-="5"(舍去),或-=-5,解得m=(3)當(dāng)m=45時,兩圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把兩個圓的方程相減,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論