2024人工智能就緒度分析報(bào)告:向標(biāo)準(zhǔn)化就緒框架邁進(jìn)(英文版)ITU國(guó)際電信聯(lián)盟_第1頁(yè)
2024人工智能就緒度分析報(bào)告:向標(biāo)準(zhǔn)化就緒框架邁進(jìn)(英文版)ITU國(guó)際電信聯(lián)盟_第2頁(yè)
2024人工智能就緒度分析報(bào)告:向標(biāo)準(zhǔn)化就緒框架邁進(jìn)(英文版)ITU國(guó)際電信聯(lián)盟_第3頁(yè)
2024人工智能就緒度分析報(bào)告:向標(biāo)準(zhǔn)化就緒框架邁進(jìn)(英文版)ITU國(guó)際電信聯(lián)盟_第4頁(yè)
2024人工智能就緒度分析報(bào)告:向標(biāo)準(zhǔn)化就緒框架邁進(jìn)(英文版)ITU國(guó)際電信聯(lián)盟_第5頁(yè)
已閱讀5頁(yè),還剩121頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

ITUPublicationsInternationalTelecommunicationUnion

TelecommunicationStandardizationSector

AIReady–AnalysisTowardsaStandardizedReadiness

Framework

Version1.0

September2024

ITU

AIReady–AnalysisTowardsaStandardizedReadinessFramework

Version1.0

September2024

ITU

Disclaimers

Thedesignationsemployedandthepresentationofthematerialinthispublicationdonotimply

theexpressionofanyopinionwhatsoeveronthepartoftheInternationalTelecommunicationUnion(ITU)oroftheITUsecretariatconcerningthelegalstatusofanycountry,territory,city,orareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.

Thementionofspecificcompaniesorofcertainmanufacturers’productsdoesnotimplythattheyareendorsedorrecommendedbyITUinpreferencetoothersofasimilarnaturethatarenotmentioned.Errorsandomissionsexcepted;thenamesofproprietaryproductsaredistinguishedbyinitialcapitalletters.

AllreasonableprecautionshavebeentakenbyITUtoverifytheinformationcontainedinthispublication.However,thepublishedmaterialisbeingdistributedwithoutwarrantyofanykind,eitherexpressedorimplied.Theresponsibilityfortheinterpretationanduseofthemateriallieswiththereader.

Theopinions,findingsandconclusionsexpressedinthispublicationdonotnecessarilyreflecttheviewsofITUoritsmembership.

ISBN

978-92-61-39131-7(Electronicversion)978-92-61-39141-6(EPUBversion)

978-92-61-39151-5(Mobiversion)

Pleaseconsidertheenvironmentbeforeprintingthisreport.

?ITU2024

Somerightsreserved.ThisworkislicensedtothepublicthroughaCreativeCommonsAttribution-Non-Commercial-ShareAlike3.0IGOlicense(CCBY-NC-SA3.0IGO).

Underthetermsofthislicence,youmaycopy,redistributeandadapttheworkfornon-commercialpurposes,providedtheworkisappropriatelycited.Inanyuseofthiswork,thereshouldbenosuggestionthatITUendorseanyspecificorganization,productsorservices.TheunauthorizeduseoftheITUnamesorlogosisnotpermitted.Ifyouadaptthework,thenyoumustlicenseyourworkunderthesameorequivalentCreativeCommonslicence.Ifyoucreateatranslationofthiswork,youshouldaddthefollowingdisclaimeralongwiththesuggestedcitation:“ThistranslationwasnotcreatedbytheInternationalTelecommunicationUnion(ITU).ITUisnotresponsibleforthecontentoraccuracyofthistranslation.TheoriginalEnglisheditionshallbethebindingandauthenticedition”.Formoreinformation,pleasevisit

/

licenses/by-nc-sa/3.0/igo/

Tableofcontents

Acronyms

v

1ExecutiveSummary

1

2Introduction

4

3CaseStudies

7

3.1CaseStudy-1:IoT-basedEnvironmentMonitoringBasedon

StandardIndices

7

3.2CaseStudy-2:AI-basedFrontendwithMultimodalBackendData

Aggregation

8

3.3CaseStudy-3:CollaborativeMulti-agentSystems

9

3.4CaseStudy-4:EmpoweringLocalCommunities

12

3.5CaseStudy-5:RegionalCustomizations

14

4UseCaseAnalysis

16

4.1UseCaseSummaries

16

4.2TrafficSafety

17

4.3SmartAgriculture

18

4.4HealthCare

21

4.5PublicServices

22

4.6DisasterPrevention

24

4.7Climate,CleanEnergy

25

4.8FutureNetworksandTelecommunications

26

4.9Accessibility

26

5DataAnalyticsStrategy

29

6Futureworkandconclusion

33

7Reference

34

AppendixA:DetailedanalysisoftheusecasesandAIimpactsontheusecases

41

AppendixB:SpecificimpactsofthesecharacteristicsonStandardsFrameworks

forAIreadinessrequirefurtherstudy

51

iii

Listoffiguresandtables

Figures

Figure1:ITUAIforGoodInfinityFrameworkforAIReadiness

2

Figure2:InstancesofReadinessFactorsinCaseStudy-1

8

Figure3:InstancesofReadinessFactorsinCaseStudy-2

9

Figure4:InstancesofReadinessFactorsinCaseStudy-3

11

Figure5:InstancesofReadinessFactorsinCaseStudy-4

13

Figure6:InstancesofReadinessFactorsinCaseStudy-5

15

Tables

Table1:CharacteristicsoftheAIReadinessfactors

29

Table2:GeneralusecaseanalysisandAIimpacts

41

Table3:Analysisofusecasescenarios

51

iv

Acronyms

ADAS

AdvancedDrivingAssistanceSystem

AEB

AutonomousEmergencyBraking

AI

ArtificialIntelligence

AIML

ArtificialIntelligenceandMachineLearning

API

ApplicationProgrammerInterfaces

ASEAN

AssociationofSoutheastAsianNations

ASR

AutomaticSpeechRecognition

CBAM

ConvolutionalBlockAttentionMechanism

CCTV

ClosedCircuitTelevision

CfE

CallforEngagement

DC

DroughtCode

DMC

DuffMoistureCode

DSRC

DedicatedShort-RangeCommunication

DUI

DrivingunderIntoxication

FDRS

FireDangerRatingSystem

FWI

FireWeatherIndex

GPS

GlobalPositioningSystem

GPU

GraphicsProcessingUnit

GWL

GroundwaterLevel

IASRI

IndianAgriculturalStatisticsResearchInstitute

IISS

IndianInstituteofSoilScience

IMD

IndianMeteorologicalDepartment

IoT

InternetofThings

KPI

KeyPerformanceIndicator

LSTM

LongShortTermModel

MARS

MultivariateAdaptiveRegressionSpline

METMalaysia

MalaysianMeteorologicalDepartment

MQTT

MessageQueuingTelemetryTransport

v

(continued)

NBSS&LUP

NationalBureauofSoilSurveyandLandUsePlanning

NLP

NaturalLanguageProcessing

NPK

Nitrogen,Phosphorus,Potassium

RAG

RetrievalAugmentedGeneration

RF

RandomForest

RL

ReinforceLearning

RMFR

RajaMusaForestReserve

RSU

RoadsideUnits

SAE

SocietyofAutomotiveEngineer

SDG

SustainableDevelopmentGoal

SDK

SoftwareDevelopmentKit

SDO

StandardsDevelopingOrganization

SRC

SourceofData

TCP/IP

TransmissionControlProtocol/InternetProtocol

TTS

Text-to-Speech

UAV

UnmannedAerialVehicle

vi

AIReady–AnalysisTowardsaStandardizedReadinessFramework

1ExecutiveSummary

ThisreportprovidesananalysisoftheArtificialIntelligence(AI)ReadinessstudyaimedatdevelopingaframeworkforassessingAIReadinesswhichindicatestheabilitytoreapthebenefitsofAIintegration.Bystudyingtheactorsandcharacteristicsindifferentdomains,abottom-upapproachisfollowedwhichallowsustofindcommonpatterns,metrics,andevaluationmechanismsfortheintegrationofAIinthesedomains.

TheanalysisofcharacteristicsofusecasesledustothemainAIreadinessfactors:

1)Availabilityofopendata

Theavailabilityofdataiscrucialintraining,modeling,andapplicationsofAIirrespectiveofthedomain.Dataavailabilityforanalysismaybeprivateorpublic.Metadataforprivatedatamaybepublished(e.g.datatypesandstructures).However,publicdata,openforanalysisbyanyone,requirescleaningandanonymizationtoremoveconfidentialorpersonalinformation.

2)AccesstoResearch

Balancingthetwomainaspectsofresearch,namelyadvancementsindomain-specificresearchandadvancementsinAIresearchrequirescollaborationbetweendomainexpertsandAIresearchers.Providingaplatformforcollaborationwithexpertsfromdifferentrealmsofknowledge,facilitatingcooperation,andexchangeofinformationamongthemiskeytocreatingasustainableecosystemforAI-basedinnovation.

3)DeploymentcapabilityalongwithInfrastructure

Twomajorcategoriesofinfrastructurearestudied–physicalinfrastructureandcommunicationinfrastructure.Consideringthecontextoftransportationsafety,examplesofphysicalinfrastructurearespeedbarriersandotherregulatorymechanismsforspeedcontrol(seeclause4.2.4).Otherexamplesaregreenhouses,moisturizers(seeclause4.3.6),andsensorsthatprovideanappropriateenvironmentandmonitorplantsinagriculturalusecases.PhysicalinfrastructureelementsplayanimportantroleintheintegrationandapplicationofAIindatacollection,aggregation-attheedgeorcore,training–federatedorcentralized,andintheapplicationofArtificialIntelligenceandMachineLearning(AI/ML)inferenceusingactuators.

Inaddition,thereisbackendinfrastructure,suchascomputeavailability,storageavailability,fiber/wirelessavailabilityforthelastmile,andhigh-speedwideareanetworkcapabilities,whichwoulddemocratizeAI/MLsolutionsandcreatescalabilityforinnovations.

4)Stakeholdersbuy-inenabledbyStandards–trust,interoperability,security

Interoperabilityandcompliancewithstandardsbuildtrust.SecurestandardsleadtoAIReadiness,asglobalparticipationandconsensusdecidewhetherpre-standardresearchcouldbeadoptedintotherealworld.Vendorecosystems,includingopensource,arediverseindifferentdomainsofusecases.Goingbacktotransportationusecases,forexample,pedestriansafetyanddriversafetyareimportantconsiderations.AdoptionofAI-basedsolutionsthatinvolvehumanssuchaspedestriansanddriversrequiretheirtrustandperceptionofusingAI-basedsolutions.

5)DeveloperEcosystemcreatedviaOpensource

Anenergizedthird-partydeveloperecosystemnotonlyfast-tracksadoptionbutalsoenablesrevenuegeneration.

1

AIReady–AnalysisTowardsaStandardizedReadinessFramework

Developerecosystembootstrapsreferenceimplementationsofalgorithms,withbaselineandopen-sourcetoolsets.Third-partyapplications,ApplicationProgrammerInterfaces(API),andSoftwareDevelopmentKits(SDK)alongwithcrowd-sourcedsolutionsincreasethegeneralizabilityofAI/MLsolutionsacrossregionsanddomainsviatransferlearning.Hardwareimplementations,especiallyopen-sourceIoTboardsareevolvingtohosttheedgedataprocessing.ReferencenetworkimplementationsprovidedviaSG20[95]referenceismaturingtothelevelofwide-scaledeployments.IoTgatewayssuchasLoRagateway,SDKs,andAPIsenablethecreationanddeploymentofnewandinnovativeapplicationsthatenableSustainableDevelopmentGoals.

6)DatacollectionandmodelvalidationviaSandboxpilotexperimentalsetups

Manyusecasesrequireanexperimentalsandbox,createexperimentalsolutions,andvalidatethemusingexperimentalsetups.Whilereal-worlddatawouldimplyamorereliablesourceofdataandarealistictestingenvironment,notallscenarioscouldbeencounteredintherealworld,especiallywhencatastrophiceventsandrelateddataarerare.

Figure1capturestheabovereadinessfactorsintotheITUAIforGoodInfinityFrameworkforAIReadiness.

Figure1:ITUAIforGoodInfinityFrameworkforAIReadiness

Thisreportcapturesfivecasestudiesinclause3,whichbringfocustospecificaspectsorimpactsofthereadinessfactors.Themappingofreadinessfactorsisrepresentedinfigureswhichcalloutthespecificreadinessfactorswhichappliestothatcasestudy.Thecasestudiesinvolvemultipleusecases.Thisreportcovers30usecasesfromvariousdomains.Eachusecasemayinturnhavedifferentusecasescenarios.Clause4hasasummaryofusecasesalongwithacluster-wisedescriptionoftheusecases.Table1inClause5describesthequantifiablecharacteristicsrelatedtoeachreadinessfactor.Thesearederivedfromthe“DetailedanalysisoftheusecasesandAIimpactsontheusecases”inrelationtoAppendixAand“SpecificimpactsofthecharacteristicsofusecasesonStandardsFrameworksforAIreadinessrequirefurtherstudy”describedinAppendixB.

2

AIReady–AnalysisTowardsaStandardizedReadinessFramework

Thereportaudienceare:

(1)The“providers”areentitiesthatsupplyreadinessfactorssuchasdata,code,models,toolsets,andtraining.Theseproviders,whichcanbepublicorprivate,mightalsocontributetostandards.Theymayactassourcesordownstreamcollatorsofthesefactors.Examplesincludedomainexpertswhocollectandanalyzedatatocreatemodels,aswellastoolsetvendors,includingthoseofferingopen-sourcesolutions.Thereportaimstohelpprovidersidentifygapsinthesefactorsandtheirassociatedcharacteristics.

(2)The“users”areentitiesthatdeployorbenefitfromthereadinessfactors.Theyincludedecisionmakerswhoneedtodeterminewhichproviderwillofferthemaximumbenefit.Examplesofusersaregovernments,regulators,andotherentitieswithinspecificdomains.

Futurestepsandconclusionsaredescribedinclause6,mainlythreestepsareproposed(1)anopenrepositoryofdatawouldbesetuptoaddressthecorrespondingAIreadinessfactorfortheavailabilityofopendata,(2)thecreationofanexperimentationSandboxwithpre-populatedstandardcomplianttoolsetsandsimulatorsstudyingtheimpactofthereadinessfactorsand(3)derivationofopenmetricsandopensourcereferencetoolsetsformeasurementandvalidationofAIreadiness.Inaddition,aPilotAIReadinessPlugfestisplannedtogiveanopportunitytoexplaintheAIReadinessfactorstovariousstakeholdersandallowthemto“plugin”variousregionalfactorssuchasdata,models,standards,toolsets,andtraining.

TheresultsoftheplugfestalongwiththenextversionofthisreportwillbereleasedattheAIforGoodSummit2025.

Acknowledgment

WeacknowledgethesupportandareverygratefulfortheencouragementprovidedbytheKingdomofSaudiArabiaduringthisproject.

WeacknowledgealsotheworkdonebyITUFocusGrouponArtificialIntelligence(AI)andInternetofThings(IoT)forDigitalAgriculture(FG-AI4A)[96]andtheusecasespublishedbyITUAIforGoodInnovateforImpactstudy[70].

WealsoacknowledgetheeffortsoftheUNInteragencyWorkingGrouponAI,co-chairedbyITUandUNESCO,infacilitatingcoordinationwithotherUNagenciesthathavecomplementaryinitiatives.

3

AIReady–AnalysisTowardsaStandardizedReadinessFramework

2Introduction

Inthiscross-domainstudy,weanalyzedusecasesrelatedtotheuseofAIindifferentverticalssuchastrafficsafety,health,agriculture,disastermanagement,accessibility,publicservices,etcwithanaimtofindpatternsinapplicationsofAIindifferentscenarios.ThegoalwastoderiveastandardizeddataanalysismethodandmetricthatcouldbeappliedtomeasurethereadinesstouseAIforsolvingrelevantproblemsintheseusecases.OuranalysisoftheusecasesincludedthefollowingcharacteristicsofusecasestobeconsideredwhileevaluatingAIreadiness:Thedatausedineachusecase,domain-specificresearchneededintheusecase,deploymentwithinfrastructurerequirements,humanfactorssupportedbystandards,experimentationcapabilityviaasandbox,andecosystemcreationusingopensource.Thesecharacteristicsareanalyzedin“Table2–GeneralusecaseanalysisandAIimpacts”inAppendixA.

ThemainAIreadinessfactorsidentifiedinthisreportare:

1)Availabilityofopendata

TheKingdomofSaudiArabiasetupanOpenDataPlatform[3]providingdatasetstothepublictoenhanceaccesstoinformation,collaboration,andinnovation.ThemajorareasofdatasetavailabilityinthisopendataplatformareHealth,AgricultureandFishing,EducationandTraining,SocialServices,andTransportandCommunications.Thetransportationsysteminthemajorcitiesenablesadvancedusecasessuchastrackingvehicleswithexcessivespeedtoguaranteepedestriansafety,providingthebestdrivingroutestoreducethenumberoftrafficjams,andreducingthemortalityratecausedbycollision.TheseusecasesutilizediversedatasuchasimagerydatacollectedbyClosedcircuittelevision(CCTV),adetailedmapofthecity,trafficsignalinformation,andvehicleGlobalPositioningSystem(GPS)details.Thisisaprimeexampleofthecollectionandhostingofopendataandenablinganalyticsfortrafficsafety[28][19][44].

Opendataenablesprivateentrepreneurs,startups,andindustriestodevelopapplicationsordesignalgorithmstoachieveSustainableDevelopmentGoals(SDGs)suchassafetransportation.However,therearestillchallengesindatacollection,cleaning,andpreprocessingwhichhindertheopeningofdataforeveryone.Awell-designedopendatastrategywouldmakesurehigh-qualitydataisavailableforscholars,developers,andanalyststodesignsolutionsbasedonreal-worldproblems,thusenhancingtheimpactofAIonsociety.

2)AccesstoResearch

Theequalimportanceofdomain-specificresearchandtheapplicationofadvancedAImodelsinpredictingwithaccuracyisbroughtoutbyexamplessuchaspredictingintoxicationlevelsandmodelingsafedriving.Analysisofbiologicalandmedicaldatausingdomain-specific,andAI-specificresearchisimportantfortheusecase[8][10].

Forexample,whileassessingthesafedrivingbehaviorsundertheinfluence(seeClause4.2.2),notonlymonitoringofdriverbehaviorwasconsidered,butevenbiologicaldatasuchaschestmovementandbreathwerecollected.Chestmovementwascollected,andanalyzed,andthepredictedheartbeatwouldserveasreferencedataformappingthebloodalcohollevel.

Aprimeexampleofacollaborativeinitiativeisthe“AIforRoadSafety"[4]launchedbyITU,theUNSecretary-General'sSpecialEnvoyforRoadSafety,andtheUNEnvoyonTechnology.ThisinitiativepromotesanAI-enhanced“safesystem"approachtoreducefatalitiesbasedon

4

AIReady–AnalysisTowardsaStandardizedReadinessFramework

sixpillars:roadsafetymanagement,saferroadsandmobility,safervehicles,saferroadusers,post-crashresponse,andspeedcontrol.

GlobalinitiativessuchasCollaborationonIntelligentTransportationSystems(CITS)[9]intendtoprovideagloballyrecognizedforumforthecoordinationofaninternationallyaccepted,globallyharmonizedsetofIntelligentTransportationSystems(ITS)communicationstandards.

GlobalInitiativessuchasCITSallowcommunitiestoaccesscollaborativeresearchonadvancedtechnologiesrelatedtospecificusecases.

3)DeploymentcapabilityalongwithInfrastructure

NetworksinterconnectvariousnodesintheAI/MLpipeline[ITU-TY.3172]suchasthesourceofdata,pre-processing,model,anddistributionofinference.Forinstance,inagricultureusecases(seeclauses4.3.2and4.3.3)soilsensorsorwatersensorsshouldbedeployedinthefieldwithhighqualityandnumberssothatthevolumeandvarietyofdataaresufficienttotrainmodelswithaccuracy.Diseasedetectionforwheatcropsdiscussedin[38]providesanexemplarystudy.Visualcamerasaredeployed30-50centimetres(abouthalfthelengthofabaseballbat)awayfromthecropandcoverallareasoftheplants.Giventhefield'slargesurface,suchinfrastructuredeploymentcapabilityislinkedtothesolution'soverallcost.Softinfrastructuresuchashostedalgorithms,GraphicsProcessingUnit(GPU)computeplatforms,andnetworkprotocolstacksprovidebackendcomputingandcommunications.

Thesepracticaldeploymentaspectssuchasnetworks,sensors,visualcameras,GPUandcompute,formtheinfrastructurerequirementsthataffecttheAIreadiness.

Apartfromlabsimulationsandexperimentations,real-worldpilotsanddeploymentsupportareneededtovalidateinnovativesolutions.PeatlandForestusecase[48]whichaimstopredictthepotentialfire,providesanexemplarstudywherethedesignedalgorithmcouldbeappliedandvalidatedintherealworld.TheLoRagatewaywasdeployedtodistributetheworkflowandensurealow-latencynetwork.Inthesoilmoisturetestingusecase(seeclause4.3.4),edgestoragewasappliedtospeeduptheprocessandsecuretheaccuracyofthesystem.IntheIoT-basedcropmonitoringusecase(seeclause4.3.5),edgedataisacquired.

Ingeneral,computationavailableattheedge,eitherprovidedusingpublic,open,orprivateinfrastructurewouldenableverticalapplicationstopoolandhosttime-criticalapplicationsclosertotheuser.Coordinationofsatellitedata[51]andtheadditionofgeospatialcapabilitiesandinfrastructurewouldcreatevalueandstimulatetheeconomyaroundgeospatialdata.Cloudhostingofopendata,availabilityofschemes,policiesinmachine-readableformat[49],openportals,andreal-timeupdatesfromagencies[50]includingvisualizationdashboardsandmobileappshelpsinbetterintegrationofAIinusecases.

4)Stakeholdersbuy-inenabledbyStandards

Interoperabilityamongdifferentsolutionprovidersbringsthechoiceofdifferentvendors,irrespectiveofopenorproprietarysolutions,tosuchprimaryactors.Standardsplayanimportantroleinensuringcomplianceandinteroperability.

Forexample,primaryactorsintheagriculturedomainarethefarmers[14][35]whotaketheinitiativeinadoptingInternetofThings(IoT)-basedsensorsfordatacollection,edgedevicesforanalytics,andlow-powercommunicationsystems,whichimpliesthattheirtrustandwillingnesstoonboardareimportant.

5

AIReady–AnalysisTowardsaStandardizedReadinessFramework

Asanexample,anadvanceddrivingassistancesystem(seeclause4.2.3)involvesdifferentcarmanufacturerswithdifferentimplementationswhomightadoptdifferentparameters,thedivergenceinimplementationmightcreatelock-insituationsforuserspreventingflexibilityandchoiceofvendors.Additionally,issuesconcerningdataprivacy,dataprotection,andresponsibilitiesaretobestudiedcollaborativelyinopenstandardssuchasthosedevelopedbyITU,whichwillensuresecure,trustable,andinteroperableend-to-endsolutions.

5)DeveloperEcosystemcreatedviaOpensource

Cloud-hostedsolutionswithexposedAPIsforsubscribing/publishingdatafromportals[49]wouldcreatevaluefortheoverallindustryandleadtoinnovativeapplicationsthatsolvereal-worldproblemsusingAI/ML.Aprimeexampleisresearchsolutionsforsatellitedatausageinthefirepropagationmodel[51].

Referencesolutions,openmodels,andtoolsetscreatedinopensourcehelpinmobilizingresearchandinnovation,actingasabaselineforAIintegration,whichcouldbeextended,enhancedoroptimizedbasedonspecificusecaserequirements.SolutionspublishedasaresultofITUAI/MLChallengessuchastheTinyMLChallenge[66]aregoodexamplesofopen,published,anddeveloper-drivensolutions.

6)DatacollectionandmodelvalidationviaSandboxpilotexperimentalsetups

ITUdefinedMLSandboxin[ITU-TY.3172]anddescribedthedetailsofSandboxarchitecturesin[ITU-TY.3181].Inessence,Sandboxisanenvironmentinwhichmachinelearningmodelscanbetrainedandtheireffectstestedandevaluatedbeforedeployingintherealworld.Thishassinceseenwiderapplicationsinvarioususecases.

ImplementingcontinuousimprovementofmodelsusingfeedbackandoptimizationsintheSandboxhelpstooptimizeessentialtaskswithindisaster-strickenareas[52].Unmannedaerialvehicles(UAVs)canlearnandadjusttheiroperations(includingroutenavigation,returningtochargingstations,anddatadetectionandtransmission)basedonfeedbackfromtheenvironment.

Forexample,trafficregulationscenariosusingvisualcameras[36]andothersensorsuseAI/MLfeedbackloops,whichcollectdata,produceinferences,createactionrecommendationsandpolicyapplications,andaretestedandvalidatedusingpre-builttrafficplansforspecificoccasions.

PilotsetupsviaSandboxescanhelpinassimilatinglocalcommunitiesandutilitiesintothesolution.Forexample,in[51],firedetectionandpropagationmodelsaretestedandvalidated,andalarmsareusedtoprovideadvancedinformationtolocalcommunitiesandutilities.

6

AIReady–AnalysisTowardsaStandardizedReadinessFramework

3CaseStudies

Aspartofourstudiesonusecases,andourdetaileddiscussionswiththeusecaseauthors,wehaveselectedcertaincasestudieswhichbringoutthebenefits(orlackofit)forincreasing/measuringAIreadiness.EspeciallywefocusonthosecasestudiesthatutilizethereadinessfactorsmentionedinSection1above.Inaddition,welookforclearmetadata,supportingreferences,andpublishedresearchpapers,withexperimentationthatcanpracticallyshowcasethebenefitsofAIreadinessontheseterms.

Eachcasestudyismappedtothe6readinessfactorslistedinclause2aboveandtheinstancesofthereadinessfactorsareexplainedforeachcasestudy.

3.1CaseStudy-1:IoT-basedEnvironmentMonitoringBasedon

StandardIndices

Thiscasestudyinvolvesasetofusecaseswhichmonitorenvironmentparameterssuchassoilsensor,piezometers,andwaterlevelsensorsetc.andinferstandardizedindicesforspecificusecasese.g.groundwaterlevel(GWL)mappedtodroughtcodes(DC).Theareaofcoveragemaybequitelarge,forexample,multiplehectorsofforestland.Verificationofsenseddataandinferreddatawithgroundtruthincollaborationwithexpertsisanessentialcharacteristicofsuchusecases.Communicationnetworks,includingdataformatconversionsareimportantstandardrequirementsforsuchusecases.

Net-Peat-Zero[48]:NetworkedAssociationofSoutheastAsianNations(ASEAN)PeatlandForestforNet-ZerodeliveredbyUniversityPutraMalaysiaisanexcellentexampleofausecasewithreal-worlddeploymentanditsapplicationofopendata,whichisaccessibletoeveryone.

ThisusecasepresentsthepossibilitytoleverageAIinpredictingForestFireinpeatlandareasinSouthAsia.Animprovedtropicalpeatlandfireweatherindex(FWI)systemisproposed,bycombiningthegroundwaterlevel(GWL)withthedroughtcode(DC).Tomonitorthepeatland,aLoRa-basedIoTsystemisused,andsensorssuchassoilsensors,piezometersensors,waterlevelsensors,andweathersensorsareused,withtheexpectationthatintegralmeteorologicalinformationcouldbedetected.Allthedatamentionedabovecouldbecross-checkedwiththeonesusedbytheMalaysianMeteorologicalDepartment(METMalaysia),whichmeansthatthedatacollectedbytheIoTsystemisauthenticandreadytobeprocessed.

Inaddition,animprovedmodeltoapplytheGWLisproposedfortheFWIformulationintheFireDangerRatingSystem(FDRS).Specifically,DCisformulatedusingGWL,insteadoftemperatureandrainintheexistingmodel.FromtheGWLaggregatedfromtheIoTsystem,theparameterispredictedusingmachinelearningbasedonaneuralnetwork.TheresultsshowthattheDCcalculatedfromtheIoTsystemhasahighcorre

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論